
MATLAB® Production Server™
Code Deployment

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Code Deployment
© COPYRIGHT 2012–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2014 Online only New for Version 1.2 (Release R2014a)
October 2014 Online only Revised for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)
September 2019 Online only Revised for Version 4.2 (Release R2019b)
March 2020 Online only Revised for Version 4.3 (Release R2020a)
September 2020 Online only Revised for Version 4.4 (Release R2020b)
March 2021 Online only Revised for Version 4.5 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Write Deployable MATLAB Code
1

MATLAB Coding Guidelines . 1-2

State-Dependent Functions . 1-3
Does My MATLAB Function Carry State? . 1-3
Defensive Coding Practices . 1-3
Techniques for Preserving State . 1-4

Deploying MATLAB Functions Containing MEX Files 1-5

Supported MATLAB Data Types for Client and Server Marshaling 1-6
Supported Data Types . 1-6
Partially Supported Data Types . 1-6
Unsupported Data Types . 1-6

Create a Deployable Archive from MATLAB Production Server
Code

2
Create Deployable Archive for MATLAB Production Server 2-2

Create MATLAB Function . 2-2
Create Deployable Archive with Production Server Compiler App 2-2
Customize Application and Its Appearance . 2-3
Package Application . 2-3

Package Deployable Archives with Production Server Compiler App 2-5
Create Function In MATLAB . 2-5
Create Deployable Archive with Production Server Compiler App 2-5
Customize the Application and Its Appearance . 2-6
Package the Application . 2-6

Package Deployable Archives from Command Line 2-8
Execute Compiler Projects with deploytool . 2-8
Package a Deployable Archive with mcc . 2-8
Differences Between Compiler Apps and Command Line 2-8

Modifying Deployed Functions . 2-10

iii

Contents

Customizing a Compiler Project
3

Customize an Application . 3-2
Customize the Installer . 3-2
Manage Required Files in Compiler Project . 3-4
Sample Driver File Creation . 3-5
Specify Files to Install with Application . 3-6
Additional Runtime Settings . 3-6

Manage Support Packages . 3-7
Using a Compiler App . 3-7
Using the Command Line . 3-7

Advanced Uses of the Command Line Compiler
4

Simplify Compilation Using Macros . 4-2
Macros . 4-2
Working With Macros . 4-2

Invoke MATLAB Build Options . 4-4
Specify Full Path Names to Build MATLAB Code . 4-4
Using Bundles to Build MATLAB Code . 4-4

MATLAB Runtime Component Cache and Deployable Archive Embedding
. 4-6

Overriding Default Behavior . 4-7
For More Information . 4-7

Functions
5

Apps
6

Persistence
7

Use a Data Cache to Persist Data . 7-2
Example: Increment a Counter Using a Data Cache 7-3

iv Contents

Example: Calculate the Shortest Route Between Cities Using Persistence
. 7-5

Step 1: Write MATLAB Code that uses Persistence Functions 7-5
Step 2: Run Example in Testing Workflow . 7-9
Step 3: Run Example in Deployment Workflow . 7-10

Persistence Functions
8

MATLAB Client
9

Connect MATLAB Session to MATLAB Production Server 9-2
When to Use MATLAB Client for MATLAB Production Server 9-2
Install MATLAB Client for MATLAB Production Server 9-2
Connect MATLAB Session to MATLAB Production Server 9-2
System Requirements . 9-3
Synchronous Function Execution . 9-3
Supported Data Types . 9-3

Execute Deployed MATLAB Functions . 9-5
Install MATLAB Client for MATLAB Production Server 9-5
Deploy MATLAB Function on Server . 9-5
Install MATLAB Production Server Add-On for the Deployable Archive . . . 9-6
Manage Installed Add-On . 9-8
Invoke Deployed MATLAB Function . 9-9

Configure Client-Server Communication . 9-11
Configure Timeouts and Retries . 9-11
Update Server Configuration . 9-12

Application Access Control . 9-14
Prerequisites . 9-14
Configure Access Control . 9-14

Execute Deployed Functions Using HTTPS . 9-17
Save SSL Certificate of Server . 9-17
Install Add-On Using HTTPS . 9-18
Manage Default Protocol for Client-Server Communication 9-18

Manage Add-Ons . 9-20
Install Add-Ons . 9-20
Remove Add-Ons . 9-22
Get Information about Add-Ons . 9-22
Manage Add-Ons . 9-23
Manage Access to Applications Deployed on Server 9-23

Deploy Add-Ons . 9-25
Prerequisites . 9-26

v

Create Standalone Executables That Use Add-Ons 9-26
Create Shared Libraries or Software Components That Use Add-Ons . . . 9-27
Create Deployable Archives That Use Add-Ons . 9-28

MATLAB Client Functions
10

MATLAB Client Apps
11

vi Contents

Write Deployable MATLAB Code

• “MATLAB Coding Guidelines” on page 1-2
• “State-Dependent Functions” on page 1-3
• “Deploying MATLAB Functions Containing MEX Files” on page 1-5
• “Supported MATLAB Data Types for Client and Server Marshaling” on page 1-6

1

MATLAB Coding Guidelines
When writing MATLAB code for deployment to MATLAB Production Server you must adhere to the
same guidelines as when writing code for deployment with MATLAB Compiler™ or MATLAB Compiler
SDK™. In addition, code deployed to MATLAB Production Server must adhere to additional
guidelines:

• functions cannot depend on nor change MATLAB state.

Functions deployed with MATLAB Production Server may not always execute on the same instance
of the MATLAB Runtime. Each worker access a different MATLAB Runtime instance.

• explicitly use varargin and varargout for functions with variable inputs and outputs.
• avoid MATLAB figure or GUI code.

Deployed MATLAB code runs on the server, any figures or GUIs created during runtime will show
up on the server machine, not the client machine. If figures or GUIs are required to run to create
the function results, make sure to close these figures at the end of your code to avoid left over
windows and leaking resources on the server.

See Also

More About
• “State-Dependent Functions” on page 1-3
• “Write Deployable MATLAB Code” (MATLAB Compiler)

1 Write Deployable MATLAB Code

1-2

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data value in a program or
program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited to:

• Modifying or relying on the MATLAB path and the Java® class path
• Accessing MATLAB state that is inherently persistent or global. Some example of this include:

• Random number seeds
• Handle Graphics® root objects that retain data
• MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.
• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a MATLAB object in any

way, it loads into MATLAB.
• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but also relies on it for your function to properly
execute, you must take additional steps (listed in this section) to ensure state retention.

When you deploy your application, consider cases where you carry state, and safeguard against that
state’s corruption if needed. Assume that your state may be changed and code defensively against
that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application

If you are using a random number seed, for example, reset it in your deployed application program to
ensure the integrity of your original MATLAB function.

Validate Global or Persistent Variable Values

If you must use global or persistent variables, always validate their value in your deployed application
and reset if needed.

Ensure Access to Data Caches

If your function relies on cached replies to previous requests, for instance, ensure your deployed
system and application has access to that cache outside of the MATLAB environment.

Use Simple Data Types When Possible

Simple data types are usually not tied to a specific application and means of storing state. Your
options for choosing an appropriate state-preserving tool increase as your data types become less
complicated and specific.

 State-Dependent Functions

1-3

Avoid Using MATLAB Callback Functions

Avoid using MATLAB callbacks, such as timer. Callback functions have the ability to interrupt and
override the current state of the MATLAB Production Server worker and may yield unpredictable
results in multiuser environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the type of data you need to
save.

• Databases provide the most versatile and scalable means for retaining stateful data. The database
acts as a generic repository and can generally work with any application in an enterprise
development environment. It does not impose requirements or restrictions on the data structure
or layout. Another related technique is to use comma-delimited files, in applications such as
Microsoft® Excel®.

• Data that is specific to a third-party programming language, such as Java and C#, can be retained
using a number of techniques. Consult the online documentation for the appropriate third-party
vendor for best practices on preserving state.

Caution Using MATLAB LOAD and SAVE functions is often used to preserve state in MATLAB
applications and workspaces. While this may be successful in some circumstances, it is highly
recommended that the data be validated and reset if needed, if not stored in a generic repository
such as a database.

1 Write Deployable MATLAB Code

1-4

Deploying MATLAB Functions Containing MEX Files
If the MATLAB function you are deploying uses MEX files, ensure that the system running MATLAB
Production Server is running the version of MATLAB Compiler used to create the MEX files.

Coordinate with your server administrator and application developer as needed.

 Deploying MATLAB Functions Containing MEX Files

1-5

Supported MATLAB Data Types for Client and Server
Marshaling

MATLAB Production Server supports and partially supports certain MATLAB data types for
marshaling between client programs and server instances. However, certain MATLAB data types are
unsupported.

Supported Data Types
• Numeric types – Integers and floating-point numbers
• Character arrays
• Structures
• Cell arrays
• Logical

Partially Supported Data Types
• Complex numbers — Only the Python® and C client libraries and the MATLAB Production Server

“RESTful API” and JSON support complex numbers.
• String arrays, enumerations, and datetime arrays — Only the MATLAB Production Server

RESTful API and JSON support these data types.

Unsupported Data Types
Some of the MATLAB data types that MATLAB Production Server does not support include the
following.

• MATLAB function handles
• Sparse matrices
• Tables
• Timetables

See Also

More About
• “JSON Representation of MATLAB Data Types”

1 Write Deployable MATLAB Code

1-6

Create a Deployable Archive from
MATLAB Production Server Code

• “Create Deployable Archive for MATLAB Production Server” on page 2-2
• “Package Deployable Archives with Production Server Compiler App” on page 2-5
• “Package Deployable Archives from Command Line” on page 2-8
• “Modifying Deployed Functions” on page 2-10

2

Create Deployable Archive for MATLAB Production Server
Supported platform: Windows®, Linux®, Mac

This example shows how to create a deployable archive from a MATLAB function. You can then give
the generated archive to a system administrator to deploy it on the MATLAB Production Server
environment.

Create MATLAB Function
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5
8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create Deployable Archive with Production Server Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Production Server Compiler. In the Production Server Compiler project
window, click Deployable Archive (.ctf).

Alternatively, you can open the Production Server Compiler app by entering
productionServerCompiler at the MATLAB prompt.

2 In the MATLAB Compiler SDK project window, specify the main file of the MATLAB application
that you want to deploy.

1
In the Exported Functions section, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package.

2 Create a Deployable Archive from MATLAB Production Server Code

2-2

Click Open.

The function addmatrix.m is added to the list of main files.

Customize Application and Its Appearance
You can customize your deployable archive, and add more information about the application as
follows:

• Archive information — Editable information about the deployed archive.
• Additional files required for your archive to run — Additional files required to run the

generated archive. These files are included in the generated archive installer. See “Manage
Required Files in Compiler Project” (MATLAB Compiler SDK).

• Files packaged for redistribution — Files that are installed with your archive. These files
include:

• Generated deployable archive
• Generated readme.txt

See “Specify Files to Install with Application” (MATLAB Compiler SDK).
• Include MATLAB function signature file — Add or create a function signature file to help

clients use your MATLAB functions. See “MATLAB Function Signatures in JSON”.

Package Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

 Create Deployable Archive for MATLAB Production Server

2-3

2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — Folder containing the archive archiveName.ctf
• for_testing — Folder containing the raw generated files to create the installer
• PackagingLog.txt — Log file generated by MATLAB Compiler

See Also
deploytool | mcc | productionServerCompiler

More About
• Production Server Compiler
• “Share Deployable Archive”
• “MATLAB Function Signatures in JSON”

2 Create a Deployable Archive from MATLAB Production Server Code

2-4

Package Deployable Archives with Production Server Compiler
App

Supported platform: Windows, Linux, Mac

This example shows how to create a deployable archive from a MATLAB function. You can then hand
the generated archive to a system administrator who will deploy it into MATLAB Production Server.

Create Function In MATLAB
In MATLAB, examine the MATLAB program that you want packaged.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(a1, a2)
a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5
8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create Deployable Archive with Production Server Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Production Server Compiler. In the Production Server Compiler project
window, click Deployable Archive (.ctf).

Alternately, you can open the Production Server Compiler app by entering
productionServerCompiler at the MATLAB prompt.

2 In the MATLAB Compiler SDK project window, specify the main file of the MATLAB application
that you want to deploy.

1
In the Exported Functions section of the toolstrip, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

 Package Deployable Archives with Production Server Compiler App

2-5

The function addmatrix.m is added to the list of main files.

Customize the Application and Its Appearance
You can customize your deployable archive, and add more information about the application as
follows:

• Archive information — Editable information about the deployed archive.
• Additional files required for your archive to run — Additional files required by the generated

archive to run. These files are included in the generated archive installer. See “Manage Required
Files in Compiler Project” (MATLAB Compiler SDK).

• Files packaged for redistribution — Files that are installed with your application. These files
include:

• Generated deployable archive
• Generated readme.txt

See “Specify Files to Install with Application” (MATLAB Compiler SDK)
• Include MATLAB function signature file — Add or create a function signature file to help

clients use your MATLAB functions.

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

2 Create a Deployable Archive from MATLAB Production Server Code

2-6

2 In the Package dialog box, verify that the option Open output folder when process
completes is selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — A folder containing the installer to distribute the archive.
• for_testing — A folder containing the raw generated files to create the installer
• PackagingLog.txt — Log file generated by the packaging tool.

See Also
deploytool | mcc | productionServerCompiler

More About
• Production Server Compiler

 Package Deployable Archives with Production Server Compiler App

2-7

Package Deployable Archives from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 2-8
“Package a Deployable Archive with mcc” on page 2-8
“Differences Between Compiler Apps and Command Line” on page 2-8

You can package deployable archives at the MATLAB prompt or your system prompt using either of
these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Package a Deployable Archive with mcc
The mcc command invokes the MATLAB Compiler and provides fine-level control over the packaging
of the deployable archive. It, however, cannot package the results in an installer.

To invoke the compiler to generate a deployable archive, use the -W CTF:component_name flag with
mcc. The -W CTF:component_name flag creates a deployable archive called component_name.ctf.

For packaging deployable archives, you can also use the following options.

Option Description
-a filePath Add any files on the path to the generated binary.
-d outFolder Specify the folder into which the results of

packaging are written.
class{className:mfilename...} Specify that an additional class is generated that

includes methods for the listed MATLAB files.

Differences Between Compiler Apps and Command Line
You perform the same functions using the compiler apps, a compiler.build function, or the mcc
command-line interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is processed the
same way as if you were packaging it using mcc.

2 Create a Deployable Archive from MATLAB Production Server Code

2-8

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute either compiler.build or mcc than go through the compiler app
workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Package Deployable Archives with Production Server Compiler App” on page 2-5

 Package Deployable Archives from Command Line

2-9

Modifying Deployed Functions
After you have built a deployable archive, you are able to modify your MATLAB code, recompile, and
see the change instantly reflected in the archive hosted on your server. This is known as hot
deploying or redeploying a function.

To hot deploy, you must have a server created and running, with the built deployable archive located
in the server’s auto_deploy folder.

The server deploys the updated version of your archive when one of the following occurs:

• Compiled archive has an updated time stamp
• Change has occurred to the archive contents (new file or deleted file)

It takes a maximum of five seconds to redeploy a function using hot deployment. It takes a maximum
of ten seconds to undeploy a function (remove the function from being hosted).

See Also
auto-deploy-root

More About
• “Share Deployable Archive”

2 Create a Deployable Archive from MATLAB Production Server Code

2-10

Customizing a Compiler Project

• “Customize an Application” on page 3-2
• “Manage Support Packages” on page 3-7

3

Customize an Application
You can customize an application in several ways: customize the installer, manage files in the project,
or add a custom installer path using the Application Compiler app or the Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or Application name
field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the Use mask
option to fill any blank spaces around the icon with white or the Use border option to add a border
around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if the name
is foo, the installed executable is foo.exe, and the Windows start menu entry is foo. The folder
created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.
• Version: The default value is 1.0.
• Author name: Name of the developer.
• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For example, if the

company name is bar, the full installation path would be InstallRoot/bar/ApplicationName.
• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page of the
installer. On Windows systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

3 Customizing a Compiler Project

3-2

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along with a status
bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When the file
explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries onto a target
system.

Windows C:\Program Files\companyName\appName
Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder field under
Additional installer options.

 Customize an Application

3-3

A text field specifying the path appended to the root folder is your installation folder. You can pick the
root folder for the application installation folder. This table lists the optional custom root folders for
each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the installer.

You change the default image in Additional Installer Options by clicking Select custom logo.
When the file explorer opens, locate and select a new image. You can drag and drop a custom image
onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged files on the
target system. You can provide useful information concerning any additional setup that is required to
use the installed binaries and instructions for how to run the application.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what additional
MATLAB files are required for the application to package and run. These files are automatically
packaged into the generated binary. The compiler does not generate any wrapper code that allows
direct access to the functions defined by the required files.

If you are using one of the compiler apps, the required files discovered by the dependency analysis
function are listed in the Files required for your application to run or Files required for your
library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To remove files,
select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not package or
not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of required
files before running. Instead, it packages all the required files that are discovered by the dependency
analysis function and adds them to the generated binary file.

You can add files to the list by passing one or more -a arguments to mcc. The -a arguments add the
specified files to the list of files to be added into the generated binary. For example, -a hello.m
adds the file hello.m to the list of required files and -a ./foo adds all the files in foo and its
subfolders to the list of required files.

3 Customizing a Compiler Project

3-4

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

• C++ shared library
• Java package
• .NET assembly
• Python package

The sample driver file creation feature in Library Compiler uses MATLAB code to generate sample
driver files in the target language. The sample driver files are used to implement the generated
shared libraries into an application in the target language. In the app, click Create New Sample to
automatically generate a new MATLAB script, or click Add Existing Sample to upload a MATLAB
script that you have already written. After you package your functions, a sample driver file in the
target language is generated from your MATLAB script and is saved in
for_redistribution_files_only\samples. Sample driver files are also included in the installer
in for_redistribution.

To automatically generate a new MATLAB file, click Create New Sample. This opens up a MATLAB
file for you to edit. The sample file serves as a starting point, and you can edit it as necessary based
on the behavior of your exported functions. The sample MATLAB files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical, struct, or cell

array.
• Data must be saved as a local variable and then passed to the exported function in the sample file

code.
• Sample file code should not require user interaction.

Additional considerations specific to the target language are as follows:

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Cell arrays and char arrays must be of size 1xN and struct arrays must be scalar. There

are no restrictions on numeric or logical arrays, other than that they must be rectangular, as in
MATLAB.

 Customize an Application

3-5

To upload a MATLAB file that you have already written, click Add Existing Sample. The MATLAB
code should demonstrate how to execute the exported functions. The required MATLAB code can be
only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample option.

You can also choose not to include a sample driver file at all during the packaging step. If you create
your own driver code in the target language, you can later copy and paste it into the appropriate
directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the installer
includes a readme file with instructions on installing the MATLAB Runtime and configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not install the
intended functionality.

When installed on a target computer, the files listed in the Files installed for your end user are
saved in the application folder.

Additional Runtime Settings

See Also

More About
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)

3 Customizing a Compiler Project

3-6

Manage Support Packages
Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, the
app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list is
determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the mcc.xml file of

the support package, and the base product of the support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In this case,
the compiler adds the information to the installation notes. You can edit installation notes in the
Additional Installer Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the support
package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, use
the-a flag with mcc command when packaging your MATLAB code to specify supporting files in the

 Manage Support Packages

3-7

support package folder. For example, if your function uses the OS Generic Video Interface
support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In this case,
you are responsible for downloading and installing the required drivers.

3 Customizing a Compiler Project

3-8

Advanced Uses of the Command Line
Compiler

• “Simplify Compilation Using Macros” on page 4-2
• “Invoke MATLAB Build Options” on page 4-4
• “MATLAB Runtime Component Cache and Deployable Archive Embedding” on page 4-6

4

Simplify Compilation Using Macros

In this section...
“Macros” on page 4-2
“Working With Macros” on page 4-2

Macros
The compiler, through its exhaustive set of options, gives you access to the tools you need to do your
job. If you want a simplified approach to compilation, you can use one simple macro that allows you
to quickly accomplish basic compilation tasks. Macros let you group several options together to
perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish a standard compilation
and the multioption alternative.

Macro Bundle Creates Option Equivalence

Function Wrapper |Output
Stage ||

-l macro_option_l Library -W lib -T link:lib
-m macro_option_m Standalone application -Wmain-Tlink:exe

Working With Macros
The -m option tells the compiler to produce a standalone application. The -m macro is equivalent to
the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information that they provide to the
compiler.

-m Macro

Option Function
-W main Produce a wrapper file suitable for a standalone application.
-T link:exe Create an executable link as the output.

Changing Macros

You can change the meaning of a macro by editing the corresponding macro_option file in
matlabroot\toolbox\compiler\bundles. For example, to change the -m macro, edit the file
macro_option_m in the bundles folder.

Note This changes the meaning of -m for all users of this MATLAB installation.

4 Advanced Uses of the Command Line Compiler

4-2

Specifying Default Macros

As the MCCSTARTUP functionality has been replaced by bundle technology, the macro_default file
that resides in toolbox\compiler\bundles can be used to specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

 mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

mcc -v -W 'lib:libfoo' -T link:lib foo.m

 Simplify Compilation Using Macros

4-3

Invoke MATLAB Build Options
In this section...
“Specify Full Path Names to Build MATLAB Code” on page 4-4
“Using Bundles to Build MATLAB Code” on page 4-4

Specify Full Path Names to Build MATLAB Code
If you specify a full path name to a MATLAB file on the mcc command line, the compiler

1 Breaks the full name into the corresponding path name and file names (<path> and <file>).
2 Replaces the full path name in the argument list with “-I <path> <file>”.

Specifying Full Path Names

For example:

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For example, suppose you
have two different MATLAB files that are both named myfile.m and they reside in /home/user/
dir1 and /home/user/dir2. The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

The compiler finds the myfile.m in dir1 and compiles it instead of the one in dir2 because of the
behavior of the -I option. If you are concerned that this might be happening, you can specify the -v
option and then see which MATLAB file the compiler parses. The -v option prints the full path name
to the MATLAB file during the dependency analysis phase.

Note The compiler produces a warning (specified_file_mismatch) if a file with a full path name
is included on the command line and the compiler finds it somewhere else.

Using Bundles to Build MATLAB Code
Bundles provide a convenient way to group sets of compiler options and recall them as needed. The
syntax of the bundle option is:

-B <bundle>[:<a1>,<a2>,...,<an>]

where bundle is either a predefined string such as cpplib or csharedlib or the name of a file that
contains a set of mcc command-line options, arguments, filenames, and/or other -B options.

4 Advanced Uses of the Command Line Compiler

4-4

A bundle can include replacement parameters for compiler options that accept names and version
numbers. For example, the bundle for C shared libraries, csharedlib, consists of:

-W lib:%1% -T link:lib

To invoke the compiler to produce the C shared library mysharedlib use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle will be replaced with the corresponding option specified to the
bundle. Use %% to include a % character. It is an error to pass too many or too few options to the
bundle.

Note You can use the -B option with a replacement expression as is at the DOS or UNIX® prompt. If
more than one parameter is passed, you must enclose the expression that follows the -B in single
quotes. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only parameter being passed. If
the example had two or more parameters, then the quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' ...
weekday data tic calendar toc

Available Bundle Files

Bundle File Creates Contents
cpplib C++ library -W cpplib:library_name -T link:lib
csharedlib C library -W lib:library_name -T link:lib
ccom COM component -W com:component_name,className,version -T link:lib
cexcel Excel Add-in -W excel:addin_name,className,version -T link:lib
cjava Java package -W java:packageName,className
dotnet .NET assembly -W

dotnet:assembly_name,className,framework_version,sec
urity,remote_type -T link:lib

 Invoke MATLAB Build Options

4-5

MATLAB Runtime Component Cache and Deployable Archive
Embedding

In this section...
“Overriding Default Behavior” on page 4-7
“For More Information” on page 4-7

Deployable archive data is automatically embedded directly in compiled components and extracted to
a temporary folder.

Automatic embedding enables usage of MATLAB Runtime Component Cache features through
environment variables.

These variables allow you to specify the following:

• Define the default location where you want the deployable archive to be automatically extracted
• Add diagnostic error printing options that can be used when automatically extracting the

deployable archive, for troubleshooting purposes
• Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes
MCR_CACHE_ROOT When set to the location of where

you want the deployable archive to
be extracted, this variable overrides
the default per-user component
cache location. This is true for
embedded .ctf files only.

On macOS, this variable is ignored
in MATLAB R2020a and later. The
app bundle contains the files
necessary for runtime.

MCR_CACHE_SIZE When set, this variable overrides
the default component cache size.

The initial limit for this variable is
32M (megabytes). This may,
however, be changed after you have
set the variable the first time. Edit
the file .max_size, which resides
in the file designated by running the
mcrcachedir command, with the
desired cache size limit.

You can override this automatic embedding and extraction behavior by compiling with the
“Overriding Default Behavior” on page 4-7 option.

Caution If you run mcc specifying conflicting wrapper and target types, the deployable archive will
not be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the deployable archive embedded in it, as if you had specified
a -C option to the command line.

4 Advanced Uses of the Command Line Compiler

4-6

Overriding Default Behavior
To extract the deployable archive in a manner prior to R2008b, alongside the compiled .NET
assembly, compile using the mcc's -C option.

You might want to use this option to troubleshoot problems with the deployable archive, for example,
as the log and diagnostic messages are much more visible.

For More Information
For more information about the deployable archive, see “Deployable Archive” (MATLAB Compiler).

 MATLAB Runtime Component Cache and Deployable Archive Embedding

4-7

Functions

5

compiler.build.productionServerArchive
Create an archive for deployment to MATLAB Production Server

Syntax
compiler.build.productionServerArchive(FunctionFiles)
compiler.build.productionServerArchive(FunctionFiles,Name,Value)
compiler.build.productionServerArchive(opts)
results = compiler.build.productionServerArchive(___)

Description
compiler.build.productionServerArchive(FunctionFiles) creates a deployable archive
using the MATLAB functions specified by FunctionFiles.

compiler.build.productionServerArchive(FunctionFiles,Name,Value) creates a
deployable archive with additional options specified using one or more name-value arguments.
Options include the archive name, JSON function signatures, and output directory.

compiler.build.productionServerArchive(opts) creates a deployable archive with options
specified using a compiler.build.ProductionServerArchiveOptions object opts. You cannot
specify any other options using name-value arguments.

results = compiler.build.productionServerArchive(___) returns build information as a
compiler.build.Results object using any of the input argument combinations in previous
syntaxes. The build information consists of the build type, the path to the compiled archive, and build
options.

Examples

Create Production Server Archive

Create a deployable server archive.

In MATLAB, locate the MATLAB function that you want to deploy as an archive. For this example, use
the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a production server archive using the compiler.build.productionServerArchive
command.
compiler.build.productionServerArchive(appFile);

This syntax generates the following files within a folder named
mymagicproductionServerArchive in your current working directory:

• mymagic.ctf — Deployable production server archive file.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not

included in the application. For information on non-supported functions, see MATLAB Compiler
Limitations (MATLAB Compiler).

5 Functions

5-2

• readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

Customize Production Server Archive

Create a production server archive and customize it using name-value arguments.

Build a production server archive using the compiler.build.productionServerArchive
command. Use name-value arguments to specify the archive name and add a JSON signature file.
compiler.build.productionServerArchive(["myfunc1.m","myfunc2.m"],...
 'ArchiveName','MagicApp',...
 'FunctionSignatures','signatures.json');

Create Multiple Production Server Archives Using Options Object

Customize multiple production server archives using a
compiler.build.ProductionServerArchiveOptions object.

Create a ProductionServerArchiveOptions object using example.m. Use name-value
arguments to specify a common output directory, disable automatically including data files, and
enable verbose output.
opts = compiler.build.ProductionServerArchiveOptions('example.m',...
 'OutputDir','D:\Documents\MATLAB\work\ProductionServerBatch',...
 'AutoDetectDataFiles','off',...
 'Verbose','on');

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'example'
 FunctionFiles: {'D:\Documents\MATLAB\work\example.m'}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: off
 Verbose: on
 OutputDir: 'D:\Documents\MATLAB\work\ProductionServerBatch'

Build the production server archive using the ProductionServerArchiveOptions object.
compiler.build.productionServerArchive(opts);

To compile using the function file example2.m with the same options, use dot notation to modify the
FunctionFiles of the existing ProductionServerArchiveOptions object before running the
build function again.
opts.FunctionFiles = 'example2.m';
compiler.build.productionServerArchive(opts);

 compiler.build.productionServerArchive

5-3

By modifying the FunctionFiles argument and recompiling, you can compile multiple archives
using the same options object.

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

opts — Production server options object
compiler.build.ProductionServerArchiveOptions object

Production server archive build options, specified as a
compiler.build.ProductionServerArchiveOptions object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Verbose','on'

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.
Example: 'ArchiveName','MyMagic'
Data Types: char | string

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

• If you set this property to 'off', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

5 Functions

5-4

FunctionSignatures — Path to JSON file
character vector | string scalar

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON”.
Example: 'FunctionSignatures','D:\Documents\MATLAB\work\magicapp
\signatures.json'

Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.
Example: 'OutputDir','D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

Verbose — Build verbosity
'off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','off'
Data Types: logical

Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object consists of:

• Build type, which is 'productionServerArchive'
• Path to the deployable archive file
• Build options, specified as a ProductionServerArchiveOptions object

See Also
compiler.build.ProductionServerArchiveOptions | compiler.build.Results |
productionServerCompiler

 compiler.build.productionServerArchive

5-5

Introduced in R2020b

5 Functions

5-6

compiler.build.ProductionServerArchiveOptions
Options for building deployable archives

Syntax
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles)
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name,Value)

Description
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles) creates a
ProductionServerArchiveOptions object using the MATLAB functions specified by
FunctionFiles. Use the ProductionServerArchiveOptions object as an input to the
compiler.build.productionServerArchive function.

opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name,Value) creates a ProductionServerArchiveOptions object with options specified using
one or more name-value arguments. Options include the archive name, output directory, and
additional files to include.

Examples

Create Deployable Archive Options Object

Create a ProductionServerArchiveOptions object from a function file.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.ProductionServerArchiveOptions(appFile)

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'magicsquare'
 FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: on
 OutputDir: '.\magicsquareproductionServerArchive'
 Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.
opts.Verbose = 'on'

opts =

 compiler.build.ProductionServerArchiveOptions

5-7

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'magicsquare'
 FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: on
 OutputDir: '.\magicsquareproductionServerArchive'
 Verbose: on

Use the DotNETAssemblyOptions object as an input to the
compiler.build.productionServerArchive function to build a production server archive.
compiler.build.productionServerArchive(opts);

Customize Deployable Archive Options Object

Create a production server archive using a ProductionServerArchiveOptions object.

Create a ProductionServerArchiveOptions object using the function files myfunc1.m and
myfunc2.m. Use name-value arguments to specify the output directory, enable verbose output, and
disable automatic detection of data files.
opts = compiler.build.ProductionServerArchiveOptions(["myfunc1.m","myfunc2.m"],...
 'ArchiveName','MyServer',...
 'OutputDir','D:\Documents\MATLAB\work\ProductionServer',...
 'AutoDetectDataFiles','off')

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'MyServer'
 FunctionFiles: {2×1 cell}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: off
 OutputDir: 'D:\Documents\MATLAB\work\ProductionServer'
 Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.
opts.Verbose = 'on'

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'MyServer'
 FunctionFiles: {2×1 cell}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: off
 OutputDir: 'D:\Documents\MATLAB\work\ProductionServer\'
 Verbose: on

Use the ProductionServerArchiveOptions object as an input to the
compiler.build.productionServerArchive function to build a production server archive.

5 Functions

5-8

buildResults = compiler.build.productionServerArchive(opts);

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Verbose','on'

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.
Example: 'ArchiveName','MyMagic'
Data Types: char | string

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

• If you set this property to 'off', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

FunctionSignatures — Path to JSON file
character vector | string scalar

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON”.

 compiler.build.ProductionServerArchiveOptions

5-9

Example: 'FunctionSignatures','D:\Documents\MATLAB\work\magicapp
\signatures.json'

Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.
Example: 'OutputDir','D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

Verbose — Build verbosity
'off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','off'
Data Types: logical

Output Arguments
opts — Production server archive build options
ProductionServerArchiveOptions object

Production server archive build options, returned as a ProductionServerArchiveOptions object.

See Also
compiler.build.productionServerArchive

Introduced in R2020b

5 Functions

5-10

compiler.build.Results
Compiler build results object

Description
A compiler.build.Results object contains information about the build type, generated files, and
build options of a compiler.build function.

All Results properties are read-only. You can use dot notation to query these properties.

Creation
There are several ways to create a compiler.build.Results object.

Properties
BuildType — Build type

This property is read-only.

The build type of the compiler.build function used to generate the results, specified as a
character vector:

compiler.build Function Build Type

Data Types: char

Files — Paths to compiled files
cell array of character vectors

This property is read-only.

Paths to the compiled files of the compiler.build function used to generate the results, specified
as a cell array of character vectors.

Build Type Files

Example: {'D:\Documents\MATLAB\work\MagicSquareArchive\MagicSquare.ctf'}
Data Types: cell

Options — Build options

This property is read-only.

Build options of the compiler.build function used to generate the results, specified as an options
object of the corresponding build type.

 compiler.build.Results

5-11

Build Type Options

Examples

See Also

Introduced in R2020b

5 Functions

5-12

productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name

Description
productionServerCompiler opens the Production Server Compiler app for the creation of a new
compiler project.

productionServerCompiler project_name opens the Production Server Compiler app with the
project preloaded.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To generate deployable archives, use the
compiler.build.productionServerArchive function, or the mcc command, or the Production
Server Compiler app.

Introduced in R2014a

 productionServerCompiler

5-13

deploytool
Open a list of application deployment apps

Syntax
deploytool
deploytool project_name

Description
deploytool opens a list of application deployment apps.

deploytool project_name opens the appropriate deployment app with the project preloaded.

Examples

Open a List of Application Deployment Apps

Open the list of apps.

deploytool

Input Arguments
project_name — name of the project to be opened
character array or string

Name of the project to be opened by the appropriate deployment app, specified as a character array
or string. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To build applications, use one of the
compiler.build family of functions or the mcc command; and to package and create an installer,
use the compiler.package.installer function.

5 Functions

5-14

mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -W CTF:archive_name -U options mfilename1 mfilename2...mfilenameN

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1
mfilename2...mfilenameN

Description
General Usage

mcc options mfilename1 mfilename2...mfilenameN compiles the functions as specified by
the options. The options used depend on the intended results of the compilation.

For information on compiling:

• standalone applications, Excel add-ins, or Hadoop® jobs, see mcc for MATLAB Compiler
• C/C++ shared libraries, .NET assemblies, Java packages, or Python packages, see mcc for

MATLAB Compiler SDK

Deployable Archive for MATLAB Production Server

mcc -W CTF:archive_name -U options mfilename1 mfilename2...mfilenameN instructs
the compiler to create a deployable archive (.ctf file) for use with a MATLAB Production Server
instance.

The syntax also creates the server-side deployable archive (.ctf file) for Microsoft Excel add-ins.

Excel Add-In for MATLAB Production Server

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1
mfilename2...mfilenameN creates a client-side Microsoft Excel add-in from the specified files that
can be used to send requests to MATLAB Production Server from Excel. Creating the client-side add-
in must be preceded by creating a server-side deployable archive (.ctf file) from the specified files.
A purely client side add-in is not viable.

• addin_name — Specifies the name of the add-in.
• className — Specifies the name of the class to be created. If you do not specify the class name,

mcc uses the addin_name as the default.
• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version number, mcc uses
the latest version.

 mcc

5-15

• minor — Specifies the minor version number. If you do not specify a version number, mcc uses
the latest version.

• input_marshaling_flags — Specifies options for how data is marshaled between Microsoft
Excel and MATLAB.

• -replaceBlankWithNaN — Specifies that a blank in Microsoft Excel is mashaled into NaN in
MATLAB. If you do not specify this flag, blanks are marshaled into 0.

• -convertDateToString — Specifies that dates in Microsoft Excel are marshaled into
MATLAB character vectors. If you do not specify this flag, dates are marshaled into MATLAB
doubles.

• output_marshaling_flags — Specifies options for how data is marshaled between MATLAB
and Microsoft Excel.

• -replaceNaNWithZero — Specifies that NaN in MATLAB is marshaled into a 0 in Microsoft
Excel. If you do not specify this flag, NaN is marshalled into #QNAN in Visual Basic®.

• -convertNumericToDate — Specifies that MATLAB numeric values are marshaled into
Microsoft Excel dates. If you do not specify this flag, Microsoft Excel does not receive dates as
output.

Examples
Create an Excel add-in for MATLAB Production Server

mcc -W 'mpsxl:myDeployableArchvie,myExcelClass,version=1.0' -T link:lib mymagic.m

Input Arguments
mfilename1 mfilename2...mfilenameN — Files to be compiled
list of file names

One or more files to be compiled, specified as a space-separated list of file names.

options — Options for customizing the output
-a | -b | -B | -c | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -r | -R | -S | -T | -u | -U | -v | -w | -W |
-X | -Y

Options for customizing the output, specified as a list of character vectors or string scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added. Multiple -a
options are permitted.

If a file name is specified with -a, the compiler looks for these files on the MATLAB path, so
specifying the full path name is optional. These files are not passed to mbuild, so you can include
files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are added
recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

5 Functions

5-16

specifies that all files in testdir, as well as all files in its subfolders, are added to the deployable
archive. The folder subtree in testdir is preserved in the deployable archive.

If the filename includes a wildcard pattern, only the files in the folder that match the pattern are
added to the deployable archive and subfolders of the given path are not processed recursively.
For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and subfolders under ./
testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the deployable archive
and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at the time of
compilation, a path entry is added to the application's run-time path so that they appear on the
path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is preserved, with
some modifications, but relative to a subdirectory of the runtime cache directory, not to the user's
local folder. The cache directory is created from the deployable archive the first time the
application is executed. You can use the function to determine whether the application is being
run in deployed mode, and adjust the path accordingly. The -a option also creates a .auth file for
authorization purposes.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other files from
that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications work without
any need to change the classpath as long as the Java class is not a member of a package. The
same applies for JAR files. However, if the class being added is a member of a package, the
MATLAB code needs to make an appropriate call to javaaddpath to update the classpath with
the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function interface to
the COM object generated by MATLAB Compiler. When imported into the workbook Visual Basic
code, this code allows the MATLAB function to be seen as a cell formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and corresponding
arguments and/or other file names. The file might contain other -B options. A bundle can include

 mcc

5-17

replacement parameters for compiler options that accept names and version numbers. See “Using
Bundles to Build MATLAB Code” (MATLAB Compiler SDK).

• -c

When used in conjunction with the -l option, suppresses compiling and linking of the generated C
wrapper code. The -c option cannot be used independently of the -l option.

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder. The specified folder must already exist.
• -e

Use -e in place of the -m option to generate a standalone Windows application that does not open
a Windows command prompt on execution. -e is equivalent to -W WinMain -T link:exe.

This option works only on Windows operating systems.
• -f

Override the default options file with the specified options file. It specifically applies to the C/C++
shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use different
ANSI compilers for different invocations of the compiler. This option is a direct pass-through to
mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB Compiler SDK.
It also causes mbuild to pass appropriate debugging flags to the system C/C++ compiler. The
debug option lets you backtrace up to the point where you can identify if the failure occurred in
the initialization of MATLAB Runtime, the function call, or the termination routine. This option
does not let you debug your MATLAB files with a C/C++ debugger.

• -I

Add a new folder path to the list of included folders. Each -I option appends the folder to the end
of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files, followed by
directory2. This option is important for standalone compilation where the MATLAB path is not
available.

5 Functions

5-18

If used in conjunction with the -N option, the -I option adds the folder to the compilation path in
the same position where it appeared in the MATLAB path rather than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to execute
successfully.

• -m

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for defining compile-
time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.

To pass options such as /bigobj, delineate the string according to your platform.

Platform Syntax
MATLAB -M 'COMPFLAGS=$COMPFLAGS /bigobj'

Windows command prompt -M COMPFLAGS="$COMPFLAGS /bigobj"

Linux and macOS command line -M CFLAGS='$CFLAGS /bigobj'

• -n

The -n option automatically identifies numeric command line inputs and treats them as MATLAB
doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is subject to
change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at compile time.
Including -N on the command line lets you replace folders from the original path, while retaining
the relative ordering of the included folders. All subfolders of the included folders that appear on
the original path are also included. In addition, the -N option retains all folders that you included
on the path that are not under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is placed at the
head of the compilation path. Use the –p option to conditionally include folders and their

 mcc

5-19

subfolders; if they are present in the MATLAB path, they appear in the compilation path in the
same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-dependent
extension is added to the specified name (for example, .exe for Windows standalone
applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under matlabroot
\toolbox to the compilation MATLAB path. The files are added in the same order in which they
appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it is
assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and all its
subfolders that appear on the original path are added to the compilation path in the same
order.

• If a folder is included with -p that is not on the original MATLAB path, that folder is ignored.
(You can use -I to force its inclusion.)

• -r

Embed resource icon in binary. The syntax is as follows:

-r 'path/to/my_icon.ico'

• -R

Provide MATLAB Runtime options.

Note This option is relevant only when building standalone applications using MATLAB Compiler.

The syntax is as follows:

-R option

Option Description Target
'-
logfile,
filename
'

Specify a log file name. Option must be in
single quotes.

MATLAB Compiler

-
nodispla
y

Suppress the MATLAB nodisplay run-time
warning.

MATLAB Compiler

5 Functions

5-20

Option Description Target
-nojvm Do not use the Java Virtual Machine (JVM). MATLAB Compiler
-
startmsg

Customizable user message displayed at
initialization time.

MATLAB Compiler Standalone
Applications

-
complete
msg

Customizable user message displayed when
initialization is complete.

MATLAB Compiler Standalone
Applications

-
singleCo
mpThread

Limit MATLAB to a single computational
thread.

MATLAB Compiler

Caution When running on macOS, if you use -nodisplay as one of the options included in
mclInitializeApplication, then the call to mclInitializeApplication must occur before
calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK, mcc still
compiles without errors and generates the results. But the -R option doesn't apply to these
libraries and does not do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets its own
MATLAB Runtime context. The context includes a global MATLAB workspace for variables, such
as the path and a base workspace for each function in the class. If multiple instances of a class are
created, each instance gets an independent context. This ensures that changes made to the global
or base workspace in one instance of the class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple instances of
a class are created, they use the context created by the first instance which saves startup time and
some resources. However, any changes made to the global workspace or the base workspace by
one instance impacts all class instances. For example, if instance1 creates a global variable A in
a singleton MATLAB Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these specific targets:

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....
Excel add-in Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
.NET assembly Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
COM component • Using the Library Compiler app, click Settings

and add -S to the Additional parameters
passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

 mcc

5-21

Target Description
compile:exe Generate a C/C++ wrapper file, and compile

C/C++ files to an object form suitable for
linking into a standalone application.

compile:lib Generate a C/C++ wrapper file, and compile
C/C++ files to an object form suitable for
linking into a shared library or DLL.

link:exe Same as compile:exe and also link object
files into a standalone application.

link:lib Same as compile:lib and also link object
files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The argument
applies only to the generic COM component and Microsoft Excel add-in targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.
• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description
-w list List the compile-time warnings that have abbreviated

identifiers, together with their status.
-w enable Enable all compile-time warnings.
-w disable[:<string>] Disable specific compile-time warnings associated with

<string>. Omit the optional <string> to apply the
disable action to all compile-time warnings.

-w enable[:<string>] Enable specific compile-time warnings associated with
<string>. Omit the optional <string> to apply the
enable action to all compile-time warnings.

5 Functions

5-22

Syntax Description
-w error[:<string>] Treat specific compile-time and runtime warnings

associated with <string> as an error. Omit the optional
<string> to apply the error action to all compile-time
and runtime warnings.

-w off[:<string>] Turn off warnings for specific error messages defined by
<string>. Omit the optional <string> to apply the off
action to all runtime warnings.

-w on[:<string>] Turn on runtime warnings associated with <string>.
Omit the optional <string> to apply the on action to all
runtime warnings. This option is enabled by default.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using isdeployed) in
startup.m, you write:

if isdeployed
 warning off
end

To turn on warnings for deployed applications, you write:

if isdeployed
 warning on
end

You can also specify multiple -w options.

For example, if you want to disable all warnings except repeated_file, you write:

-w disable -w enable:repeated_file

When you specify multiple -w options, they are processed from left to right.
• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files generated by the
compiler. You provide a list of functions, and the compiler generates the wrapper functions and
any appropriate global variable definitions.

Target Syntax
Standalone Application -W 'main:appName,version=version'
Standalone Application (no Windows console) -W

'WinMain:appName,version=version'
Excel Add-In -W

'excel:addinName,className,version=
version'

 mcc

5-23

Target Syntax
C Shared Library -W 'lib:libName'
C++ Shared Library -W 'cpplib:libName[,{all|legacy|

generic}]'
COM Component -W 'com:comName,className'
.NET Assembly -W

'dotnet:assemblyName,className,fram
eworkVersion,security,{remote|
local}'

Java Package -W 'java:packageName,className'
Python Package -W 'python:packageName,className'
MATLAB Production Server Deployable
Archive

-W 'CTF:archiveName'

MATLAB Production Server Excel Add-In -W
'mpsxl:addinName,className,version'

Note Replace single quotes with double when executing the command from a Windows Command
Prompt.

• -X

Use -X to ignore data files read by common MATLAB file I/O functions during dependency
analysis. For more information, see “Dependency Analysis Using MATLAB Compiler” (MATLAB
Compiler). For examples on how to use the -X option, see %#exclude.

• -Y

Use

 -Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

Tips

See Also

5 Functions

5-24

Apps

6

Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB functions. It
also packages MATLAB functions into archives for deployment to MATLAB Production Server.

6 Apps

6-2

 Production Server Compiler

6-3

Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create Deployable Archive for MATLAB Production Server” on page 2-2
• “Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server”

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

6 Apps

6-4

Folder where files for building a custom installer are stored are stored as a character array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

Programmatic Use
productionServerCompiler

See Also
Topics
“Create Deployable Archive for MATLAB Production Server” on page 2-2
“Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server”

Introduced in R2013b

 Production Server Compiler

6-5

Persistence

7

Use a Data Cache to Persist Data
Persistence provides a mechanism to cache data between calls to MATLAB code running on a server
instance. A persistence service runs separately from the server instance and can be started and
stopped manually. A connection name links a server instance to a persistence service. A persistence
service uses a persistence provider to store data. Currently, Redis™ is the only supported persistence
provider. The connection name is used in MATLAB application code to create a data cache in the
linked persistence service.

Before starting a persistence service for an on-premises server instance from the system command
prompt, you must create a JSON file called mps_cache_config and place it in the config folder of
the server instance.

mps_cache_config
{
 "Connections": {
 "<connection_name>": {
 "Provider": "Redis",
 "Host": "<hostname>",
 "Port": <port_number>,
 "Key": <access_key>
 }
 }
}

Specify the <connection_name>, <hostname>, and <port_number> in the JSON file. The host
name can either be localhost or a remote host name obtained from an Azure® Redis cache
resource. If you use Azure Cache for Redis, you must specify an access key. To use an Azure Redis
cache, you need a Microsoft Azure account.

You can specify multiple connections in the file mps_cache_config. Each connection must have a
unique name and a unique (host, port) pair. If you are using the persistence service through the
dashboard, the file mps_cache_config is automatically created in the config folder of the server
instance.

7 Persistence

7-2

Workflow to Use Persistence

Steps Command Line Dashboard
1. Create file
mps_cache_config

Manually create a JSON file and place it
in the config folder of the server
instance.

Automatically created.

2. Start persistence
service

Use mps-cache to start a persistence
service.

For testing purposes, you can create a
persistence service controller object
using mps.cache.control.

• Create a persistence service.
• Add the persistence service to

a server instance using a
connection name.

• Start the persistence service.
• Attach the connection

associated with a persistence
service to a server instance.

3. Create a data cache Use mps.cache.connect to create a
data cache.

Use mps.cache.connect to
create a data cache.

Example: Increment a Counter Using a Data Cache
This example shows you how to use persistence to increment a counter using a data cache. The
example presents two workflows: a testing workflow that uses the MATLAB and a deployment
workflow that requires an active server instance.

Testing Workflow

1 Create a persistence service that uses Redis as the persistence provider and start the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)
start(ctrl)

2 Write MATLAB code that creates a cache and then updates a counter using the cache. Name the
file myCounter.m

myCounter.m

function x = myCounter(cacheName,connectionName)

% create a data cache
c = mps.cache.connect(cacheName,'Connection',connectionName);

% if the key 'count' doesn't exist yet, initialize it
if isKey(c,'count') == false
 put(c,'count',0)
else
 value = get(c,'count');
 % increment the counter
 put(c,'count', value+1);
end
x = get(c,'count');

3 Test the counter.

for i = 1:5
 y(i) = myCounter('myCache','myRedisConnection');

 Use a Data Cache to Persist Data

7-3

end
y

y =

 0 1 2 3 4

Deployment Workflow

Before you deploy code that uses persistence to a server instance, start the persistence service and
attach it to the server instance. You can start the persistence service from the system command line
using mps-cache or follow the steps in the dashboard. This example assumes your server instance
uses the default host and port: localhost:9910.

1 Package the file myCounter.m using the Production Server Compiler app or mcc.
2 Deploy the archive (myCounter.ctf file) to the server.
3 Test the counter. You can make calls to the server using the “RESTful API” from the MATLAB

desktop.
rhs = {['myCache'],['myRedisConnection']};
body = mps.json.encoderequest(rhs,'Nargout',1);

options = weboptions;
options.ContentType = 'text';
options.MediaType = 'application/json';
options.Timeout = 30;

for i = 1:5
response = webwrite('http://localhost:9910/myCounter/myCounter', body, options);
x(i) = mps.json.decoderesponse(response);
end
x = [x{:}]

x =

 0 1 2 3 4

As expected, the results from the testing environment workflow and the deployment environment
workflow are the same.

See Also
get | mps.cache.Controller | mps.cache.DataCache | mps.cache.connect |
mps.cache.control | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex |
mps.sync.mutex | put

More About
• “Example: Calculate the Shortest Route Between Cities Using Persistence” on page 7-5

7 Persistence

7-4

Example: Calculate the Shortest Route Between Cities Using
Persistence

This example shows how to manage persistent data in application archives deployed to MATLAB
Production Server. It uses the MATLAB Production Server “RESTful API” and JSON to connect one or
more instances of a MATLAB app to an archive deployed on the server.

MATLAB Production Server workers are stateless. Persistence provides a mechanism to maintain
state by caching data between multiple calls to MATLAB code deployed on the server. Multiple
workers have access to the cached data.

The example describes two workflows.

1 A testing workflow for testing the functionality of the application in a MATLAB desktop
environment before deploying it to the server.

2 A deployment workflow that uses an active MATLAB Production Server instance to deploy the
archive.

To demonstrate how to use persistence, this example uses the traveling salesman problem, which
involves finding the shortest possible route between cities. This implementation stores a persistent
MATLAB graph object in the data cache. Cities form the nodes of the graph and the distances
between the cities form the weights associated with the graph edges. In this example, the graph is a
complete graph. The testing workflow uses the local version of the route-finding functions. The
deployment workflow uses route-finding-functions that are packaged into an archive and deployed to
the server. The MATLAB app calls the route-finding functions. These functions read from and write
graph data to the cache.

The code for the example is located at $MPS_INSTALL/client/matlab/examples/persistence/
TravelingSalesman, where $MPS_INSTALL is the location where MATLAB Production Server is
installed.

To host a deployable archive created with the Production Server Compiler app, you must have a
version of MATLAB Runtime installed that is compatible with the version of MATLAB you use to
create your archive. For more information, see “Supported MATLAB Runtime Versions”.

1. “Step 1: Write MATLAB Code that uses Persistence Functions” on page 7-5
2. “Step 2: Run Example in Testing Workflow” on page 7-9
3. “Step 3: Run Example in Deployment Workflow” on page 7-10

Step 1: Write MATLAB Code that uses Persistence Functions
1 Write a function to initialize persistent data

Write a function to check whether a graph of cities and distances exists in the data cache. If the
graph does not exist, create it from an Excel spreadsheet that contains the distance data and
write it to the cache. Because only one MATLAB Production Server worker at a time can perform
this write operation, use a synchronization lock to ensure that data initialization happens only
once.

Connect to the cache that stores the distance data or create it if it does not exist using
mps.cache.connect. Acquire a lock on a mutex using mps.sync.mutex for the duration of the
write operation. Release the lock once the data is written to the cache.

 Example: Calculate the Shortest Route Between Cities Using Persistence

7-5

Initialize the distance data using the loadDistanceData function.

function tf = loadDistanceData(connectionName, cacheName)
 c = mps.cache.connect(cacheName,'Connection',connectionName);
 tries = 0;

 while isKey(c,'Distances') == false && tries < 6
 lk = mps.sync.mutex('DistanceData','Connection',connectionName);
 if acquire(lk,10)
 if isKey(c,'Distances') == false
 g = initDistanceData('Distances.xlsx');
 c.Distances = g;
 end
 release(lk);
 end
 tries = tries + 1;
 end
 tf = isKey(c,'Distances');
end

2 Write functions to read persistent data

Write a function to read the distance data graph from the data cache. Because reading data from
the cache is an idempotent operation, you do not need to use synchronization locks. Connect to
the cache using mps.cache.connect and then retrieve the graph.

Read the graph from the cache and convert it into a cell array using the listDestinations
function.

Calculate the shortest possible route using the findRoute function. Use the nearest neighbor
algorithm, by starting at a given city and repeatedly visiting the next nearest city until all cities
have been visited.

function destinations = listDestinations()
 c = mps.cache.connect('TravelingSalesman','Connection','ScratchPad');
 if loadDistanceData('ScratchPad','TravelingSalesman') == false
 error('Failed to load distance data. Cannot continue.');
 end

 g = c.Distances;
 destinations = table2array(g.Nodes);
end

function [route,distance] = findRoute(start,destinations)
 c = mps.cache.connect('TravelingSalesman','Connection','ScratchPad');
 if loadDistanceData('ScratchPad','TravelingSalesman') == false
 error('Failed to load distance data. Cannot continue.');
 end

 g = c.Distances;
 route = {start};
 distance = 0;
 current = start;

 while ~isempty(destinations)
 minDistance = Inf;
 nextSegment = {};
 for n = 1:numel(destinations)

7 Persistence

7-6

 [p,d] = shortestpath(g,current,destinations{n});
 if d < minDistance
 nextSegment = p(2:end);
 minDistance = d;
 end
 end

 current = nextSegment{end};
 distance = distance + minDistance;
 destinations = setdiff(destinations,current);
 route = [route nextSegment];
 end
end

3 Write a function to modify persistent data

Write a function to add a new city. Adding a city modifies the graph stored in the data cache.
Because this operation requires writing to the cache, use the mps.sync.mutex function
described in Step 1 for locking. After adding a city, check that the graph is still complete by
confirming that the distance between every pair of cities is known.

Add a city using the addDestination function. Adding a city adds a new graph node name
along with new edges connecting this node to all existing nodes in the graph. The weights of the
newly added edges are given by the vector distances. destinations is a cell array of
character vectors that has the names of other cities in the graph.

function count = addDestination(name, destinations, distances)
 count = 0;
 c = mps.cache.connect('TravelingSalesman','Connection','ScratchPad');
 if loadDistanceData('ScratchPad','TravelingSalesman') == false
 error('Failed to load distance data. Cannot continue.');
 end

 lk = mps.sync.mutex('DistanceData','Connection','ScratchPad');
 if acquire(lk,10)
 g = c.Distances;
 newDestinations = setdiff(g.Nodes.Name, destinations);
 if ~isempty(newDestinations)
 error('MPS:Example:TSP:MissingDestinations', ...
 'Add distances for missing destinations: %s', ...
 strjoin(newDestinations,', '));
 end

 src = repmat({name},1,numel(destinations));
 g = addedge(g, src, destinations, distances);
 c.Distances = g;
 release(lk);
 count = numnodes(g);
 end
end

4 Write a MATLAB app to call route-finding functions

Write a MATLAB app that wraps the functions described in Steps 2 and 3 in their respective
proxy functions. The app allows you to specify a host and a port. For testing, invoke the local
version of the route-finding functions when the host is blank and the port has the value 0. For the
deployment workflow, invoke the deployed functions on the server running on the specified host
and port. Use the webwrite function to send HTTP POST requests to the server.

 Example: Calculate the Shortest Route Between Cities Using Persistence

7-7

For more information on how to write an app, see “Create and Run a Simple App Using App
Designer” (MATLAB).

Write the proxy functions findRouteProxy, addDestinationProxy, and
listDestinationProxy for the findRoute, addDestination, and listDestination
functions, respectively.

 function destinations = listDestinationsProxy(app)
 if isempty(app.HostEditField.Value) && ...
 app.PortEditField.Value <= 0
 destinations = listDestinations();
 return;
 end

 listDestinations_OPTIONS = weboptions('MediaType','application/json','Timeout',60,'ContentType','raw');
 listDestinations_HOST = app.HostEditField.Value;
 listDestinations_PORT = app.PortEditField.Value;
 noInputJSON = '{ "rhs": [], "nargout": 1 }';
 destinations_JSON = ...
 webwrite(sprintf('http://%s:%d/TravelingSalesman/listDestinations',listDestinations_HOST,listDestinations_PORT), noInputJSON, listDestinations_OPTIONS);
 if iscolumn(destinations_JSON), destinations_JSON = destinations_JSON'; end
 destinations_RESPONSE = mps.json.decoderesponse(destinations_JSON);
 if isstruct(destinations_RESPONSE)
 error(destinations_RESPONSE.id,destinations_RESPONSE.message);
 else
 if nargout > 0, destinations = destinations_RESPONSE{1}; end
 end
 end

 function [route,distance] = findRouteProxy(app,start,destinations)
 if isempty(app.HostEditField.Value) && ...
 app.PortEditField.Value <= 0
 [route,distance] = findRoute(start,destinations);
 return;
 end
 findRoute_OPTIONS = weboptions('MediaType','application/json','Timeout',60,'ContentType','raw');
 findRoute_HOST = app.HostEditField.Value;
 findRoute_PORT = app.PortEditField.Value;
 start_destinations_DATA = {};
 if nargin > 0, start_destinations_DATA = [start_destinations_DATA { start }]; end
 if nargin > 1, start_destinations_DATA = [start_destinations_DATA { destinations }]; end
 route_distance_JSON = ...
 webwrite(sprintf('http://%s:%d/TravelingSalesman/findRoute',findRoute_HOST,findRoute_PORT), mps.json.encoderequest(start_destinations_DATA,'nargout',nargout), findRoute_OPTIONS);
 if iscolumn(route_distance_JSON), route_distance_JSON = route_distance_JSON'; end
 route_distance_RESPONSE = mps.json.decoderesponse(route_distance_JSON);
 if isstruct(route_distance_RESPONSE)
 error(route_distance_RESPONSE.id,route_distance_RESPONSE.message);
 else
 if nargout > 0, route = route_distance_RESPONSE{1}; end
 if nargout > 1, distance = route_distance_RESPONSE{2}; end
 end
 end

 function count = addDestinationProxy(app, name, destinations,distances)
 if isempty(app.HostEditField.Value) && ...
 app.PortEditField.Value <= 0
 count = addDestination(name, destinations,distances);
 return;

7 Persistence

7-8

 end

 addDestination_OPTIONS = weboptions('MediaType','application/json','Timeout',60,'ContentType','raw');
 addDestination_HOST = app.HostEditField.Value;
 addDestination_PORT = app.PortEditField.Value;
 name_destinations_distances_DATA = {};
 if nargin > 0, name_destinations_distances_DATA = [name_destinations_distances_DATA { name }]; end
 if nargin > 1, name_destinations_distances_DATA = [name_destinations_distances_DATA { destinations }]; end
 if nargin > 2, name_destinations_distances_DATA = [name_destinations_distances_DATA { distances }]; end
 count_JSON = ...
 webwrite(sprintf('http://%s:%d/TravelingSalesman/addDestination',addDestination_HOST,addDestination_PORT), mps.json.encoderequest(name_destinations_distances_DATA,'nargout',nargout), addDestination_OPTIONS);
 if iscolumn(count_JSON), count_JSON = count_JSON'; end
 count_RESPONSE = mps.json.decoderesponse(count_JSON);
 if isstruct(count_RESPONSE)
 error(count_RESPONSE.id,count_RESPONSE.message);
 else
 if nargout > 0, count = count_RESPONSE{1}; end
 end
 end

Step 2: Run Example in Testing Workflow
Test the example code in the MATLAB desktop environment. To do so, copy the all the files located at
$MPS_INSTALL/client/matlab/examples/persistence/TravelingSalesman to a writable
folder on your system, for example, /tmp/persistence_example. Start the MATLAB desktop and
set the current working directory to /tmp/persistence_example using the cd command.

For testing purposes, control a persistence service from the MATLAB desktop with the
mps.cache.control function. This function returns an mps.cache.Controller object that
manages the life cycle of a local persistence service.

1 Create an mps.cache.Controller object for a local persistence service that uses the Redis
persistence provider.

>> ctrl = mps.cache.control('ScratchPad', 'Redis', 'Port', 8675);

When active, this controller enables a connection named ScratchPad. Connection names link
caches to storage locations in persistence services. The mps.cache.connect function requires
connection names to create data caches. The MATLAB Production Server administrator sets
connection names in the cache configuration file mps_cache_config. By using the same
connection names in MATLAB desktop sessions, you enable your code to move from development
through testing to production without change.

2 Start the persistence service using start.

>> start(ctrl);
3 Start the TravelingSalesman route-finding app that uses the persistence service.

>> TravelingSalesman

The app starts with default values for Host and Port.

Click Load Cities to load the list of cities. Use the Start menu to set a starting location and the
>> and << buttons to select and deselect cities to visit. Click Compute Path to display a route
that visits all the cities.

 Example: Calculate the Shortest Route Between Cities Using Persistence

7-9

4 When you close the app, stop the persistence service using stop. Stopping a persistence service
will delete the data stored by that service.

>> stop(ctrl);

Step 3: Run Example in Deployment Workflow
To run the example in the deployment workflow, copy the all the files located at $MPS_INSTALL/
client/matlab/examples/persistence/TravelingSalesman to a writeable folder on your
system, for example, /tmp/persistence_example. Start the MATLAB desktop and set the current
working directory to /tmp/persistence_example using the MATLAB cd command.

The deployment workflow manages the lifetime of a persistence service outside of a MATLAB desktop
environment and invokes the route-finding functions packaged in an archive deployed to the server.

1 Create a MATLAB Production Server instance

7 Persistence

7-10

Create a server from the system command line using mps-new. For more information, see
“Create Server Instance”. If you have not already set up your server environment, see mps-
setup for more information.

Create a new server server_1 located in the folder tmp.

mps-new /tmp/server_1

Alternatively, use the MATLAB Production Server dashboard to create a server. For more
information, see “Set Up and Log In to MATLAB Production Server Dashboard”.

2 Create a persistence service connection

The deployable archive requires a persistence service connection named ScratchPad. Use the
dashboard to create the ScratchPad connection or copy the file mps_cache_config from the
example directory to the config directory of your server instance. If you already have an
mps_cache_config file in your config directory, edit it to add the ScratchPad connection as
specified in the example mps_cache_config.

3 Create a deployable archive with the Production Server Compiler App and deploy it to the server

1 Open Production Server Compiler app

• MATLAB toolstrip: On the Apps tab, under Application Deployment, click Production
Server Compiler.

• MATLAB command prompt: Enter productionServerCompiler.
2 In the Application Type menu, select Deployable Archive.
3 In the Exported Functions field, add findRoute.m, listDestinations.m and

addDestination.m.
4 Under Archive information, rename the archive to TravelingSalesman.
5 Under Additional files required for your archive to run, add Distances.xlsx.
6 Click Package.
7 The generated deployable archive TravelingSalesman.ctf is located in the

for_redistribution folder of the project. Copy the TravelingSalesman.ctf file to the
auto_deploy folder of the server, /tmp/server_1/auto_deploy in this example, for
hosting.

4 Start the server instance

Start the server from the system command line using mps-start.

mps-start -C /tmp/server_1

Alternatively, use the dashboard to start the server.
5 Start the persistence service

Start the persistence service from the system command line using mps-cache.

mps-cache start -C /tmp/server_1 --connection ScratchPad

Alternatively, use the dashboard to start and attach the persistence service.
6 Test the app

Start the TravelingSalesman route-finding app that uses the persistence service.

>> TravelingSalesman

 Example: Calculate the Shortest Route Between Cities Using Persistence

7-11

The app starts with empty values for Host and Port. Refer to the server configuration file
main_config located at server_name/config to get the host and port values for your
MATLAB Production Server instance. For this example, find the config file at /tmp/server_1/
config. Enter the host and port values in the app.

Click Load Cities to load the list of cities. Use the Start menu to set a starting location and the
>> and << buttons to select and deselect cities to visit. Click Compute Path to display a route
that visits all the cities.

The results from the testing environment workflow and the deployment environment workflow are the
same.

See Also
mps.cache.Controller | mps.cache.DataCache | mps.cache.connect | mps.cache.control
| mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex

7 Persistence

7-12

More About
• “Use a Data Cache to Persist Data” on page 7-2

 Example: Calculate the Shortest Route Between Cities Using Persistence

7-13

Persistence Functions

8

mps.cache.DataCache
Represent cache concept in MATLAB code

Description
mps.cache.DataCache represents the concept of cache in MATLAB code. It is an abstract class that
serves as a superclass for each persistence provider-specific data cache class.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Creation
Create a persistence provider-specific subclass of mps.cache.DataCache using
mps.cache.connect.

Properties
See provider-specific subclasses for properties.

Object Functions
mps.cache.connect Connect to cache, or create a cache if it doesn't exist
bytes Return the number of bytes of storage used by value stored at each key
clear Remove all keys and values from cache
flush Write all locally modified keys to the persistence service
get Fetch values of keys from cache
getp Get the value of a public cache property
isKey Determine if the cache contains specified keys
keys Get all keys from cache
length Number of key-value pairs in the data cache
purge Flush all local data to the persistence service
put Write key-value pairs to cache
remove Remove keys from cache
retain Store remote keys from cache locally or return locally stored keys

Examples
Connect to a Redis Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection')

8 Persistence Functions

8-2

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

See Also
mps.cache.Controller

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 mps.cache.DataCache

8-3

mps.cache.Controller
Manage the life cycle of a persistence service in a MATLAB testing environment

Description
mps.cache.Controller is used to manage the life cycle of a persistence service in a MATLAB
testing environment. You can perform various actions such as starting and stopping the service using
the object.

Creation
Create a mps.cache.Controller object using mps.cache.control.

Properties
ActiveConnection — Connection indicator
True | False

This property is read-only.

Indicates whether the connection to the persistence provider is active or not. The value is True when
the persistence service is attached to the MATLAB session, otherwise it is False.
Example: ActiveConnection: False

ManageService — Service management indicator
True | False | Unknown

This property is read-only.

Indicates whether the controller object is managing the persistence service or not. ManageService
is True if the persistence service is started using the controller's startstart method and False if
the MATLAB session is attached to the persistence service using the controller's attach method. In
all other cases, the value is set to Unknown.

If ManageService is True, destroying the controller object via delete or exiting MATLAB will stop
the persistence service.
Example: ManageService: True

Host — Host name
character vector

This property is read-only.

Name of the system hosting the persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.

8 Persistence Functions

8-4

Example: Host: 'localhost'

Port — Port number
positive scalar

This property is read-only.

Port number for persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.
Example: Port: 4519

ProviderName — Name of persistence provider
'Redis' | 'MatlabTest'

This property is read-only.

Name of the persistence provider.

Currently, Redis is the only supported persistence provider.

You can also use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, the provider name is displayed as 'MatlabTest'.
Example: ProviderName: 'Redis'
Example: ProviderName: 'MatlabTest'

ConnectionName — Name of connection
character vector | string

This property is read-only.

Name of connection to persistence service.
Example: ConnectionName: 'myRedisConnection'

Folder* — Storage folder path
character vector

This property is read-only.

Storage folder path. The folder displayed is used as a database.

* This property is displayed only when you create a controller that uses MATLAB as a persistence
provider.
Example: Folder: 'c:\tmp'

Object Functions
mps.cache.control Create a persistence service controller object
start Start a persistence service and attach it a to MATLAB session
stop Stop a persistence service and detach it from a MATLAB session
restart Restart a persistence service and attach it to a MATLAB session

 mps.cache.Controller

8-5

attach Connect a MATLAB session to a persistence service that is already running
detach Disconnect MATLAB session from a persistence service that is already running
ping Test whether the persistence service is reachable
version Version number for persistence provider

Examples
Create a Redis Service Controller

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

ctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Host: 'localhost'
 Port: 4519
 Operations: "read | write | create | update"
 ProviderName: 'Redis'
 ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')

mctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Folder: 'c:\tmp'
 Operations: "read | write | create | update"
 ProviderName: 'MatlabTest'
 ConnectionName: 'myMATFileConnection'

See Also
mps.cache.DataCache

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-6

mps.cache.connect
Connect to cache, or create a cache if it doesn't exist

Syntax
c = mps.cache.connect(cacheName)
c = mps.cache.connect(cacheName,'Connection',connectionName)

Description
c = mps.cache.connect(cacheName) connects to a cache when there's a single connection to a
persistence service.

c = mps.cache.connect(cacheName,'Connection',connectionName) connects to a cache
using the connection specified by connectionName when there are multiple connections to a
persistence service.

Examples

Create a Cache When There is a Single Connection to a Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

When you have a single connection, you do not need to specify the connection name to
mps.cache.connect.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)
start(ctrl)
c = mps.cache.connect('myCache');

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Create a Cache When There are Multiple Connections to a Persistence Service

When you have multiple connections to a persistence service, create a cache by specifying the
connection name associated with the service you want to use.

 mps.cache.connect

8-7

ctrl_1 = mps.cache.control('myRedisConnection1','Redis','Port',4519)
start(ctrl_1)
ctrl_2 = mps.cache.control('myRedisConnection2','Redis','Port',4520)
start(ctrl_2)
c = mps.cache.connect('myCache','Connection','myRedisConnection1')

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection1'

Use getp instead of dot notation to access properties.

Input Arguments
cacheName — Cache name to connect to or create
character vector

Cache name to connect to or create, specified as a character vector.
Example: 'myCache'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

Output Arguments
c — Data cache object
persistence provider-specific data cache object

A persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

See Also
mps.cache.DataCache

Introduced in R2018b

8 Persistence Functions

8-8

mps.cache.control
Create a persistence service controller object

Syntax
ctrl = mps.cache.control(connectionName,Provider,'Port',num)
ctrl = mps.cache.control(connectionName,Provider,'Folder',folderPath)

Description
ctrl = mps.cache.control(connectionName,Provider,'Port',num) creates a persistence
service controller object using a connection to a persistence service specified by connectionName, a
persistence provider specified by Provider, and a port number num for the service.

You cannot compile and deploy this function on the server. This function is available only for testing.

ctrl = mps.cache.control(connectionName,Provider,'Folder',folderPath) creates a
persistence service controller object that uses a folder specified by folderPath as a database.

Use this syntax when you want to use MATLAB as a persistence provider for testing purposes.

You cannot compile and deploy this function on the server. This function is available only for testing.

Examples
Create a Redis Service Controller

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

ctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Host: 'localhost'
 Port: 4519
 Operations: "read | write | create | update"
 ProviderName: 'Redis'
 ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')

mctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Folder: 'c:\tmp'

 mps.cache.control

8-9

 Operations: "read | write | create | update"
 ProviderName: 'MatlabTest'
 ConnectionName: 'myMATFileConnection'

Input Arguments
connectionName — Name of the connection
character vector | string

Name of the connection to the persistence service, specified as a character vector.

The connectionName links a MATLAB session to a persistence service.
Example: 'myRedisConnection'

Provider — Name of the persistence provider
'Redis' | 'MatlabTest'

Name of the persistence provider, specified as a character vector.

You can use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, specify the provider name as 'MatlabTest'.
Example: 'Redis'
Example: 'MatlabTest'

num — Port number
positive scalar

Port number for the persistence service.
Example: 'Port', 4519

folderPath — Storage folder path
character vector

Storage folder path, specified as a character vector.

Specify this input only when you want to use MATLAB as a persistence provider for testing purposes.
A folder specified by folderPath serves as a database.
Example: 'Folder','c:\tmp'

Output Arguments
ctrl — Persistence provider service controller object
mps.cache.Controller object

Persistence provider service controller returned as a mps.cache.Controller object.

See Also
mps.cache.Controller | restart | start | stop

Topics
“Use a Data Cache to Persist Data” on page 7-2

8 Persistence Functions

8-10

Introduced in R2018b

 mps.cache.control

8-11

attach
Connect a MATLAB session to a persistence service that is already running

Syntax
attach(ctrl)

Description
attach(ctrl) connects a MATLAB session to a persistence service that is already running.

Examples

Connect a MATLAB Session to a Persistence Service

Attach MATLAB code to a persistence service.

Start a persistence service outside your MATLAB session from system command line using mps-
cache or using the dashboard. Assuming your started the service using a connection name
myOutsideRedisConnection at port 8899, attach your MATLAB session to it from the
MATLABdesktop.
ctrl = mps.cache.control('myOutsideRedisConnection','Redis','Port',8899);
attach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: attach(ctrl)

See Also
detach | restart | start | stop

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-12

detach
Disconnect MATLAB session from a persistence service that is already running

Syntax
detach(ctrl)

Description
detach(ctrl) disconnects MATLAB session from a persistence service that is already running.

Examples

Disconnect MATLAB Code

Disconnect MATLAB code from a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can connect MATLAB code to it. You can
then disconnect the code from the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
attach(ctrl)
detach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: detach(ctrl)

See Also
attach | restart | start | stop

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 detach

8-13

start
Start a persistence service and attach it a to MATLAB session

Syntax
start(ctrl)

Description
start(ctrl) starts a persistence service represented by ctrl and attaches it to a current MATLAB
session.

• To make a persistence service available in a MATLAB session, the service must be started and
then attached to the MATLAB session. start performs both these actions.

• If a persistence service has already been started, there is no need to call start. Use attach
instead.

• start and stop, attach and detach must be used in pairs.
• If you connected a persistence service to your MATLAB session with start, you must disconnect

with stop.
• If you connected with attach, you must disconnect with detach.

Examples
Start a Persistence Service

Start a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: start(ctrl)

See Also
attach | detach | restart | stop

Topics
“Use a Data Cache to Persist Data” on page 7-2

8 Persistence Functions

8-14

Introduced in R2018b

 start

8-15

stop
Stop a persistence service and detach it from a MATLAB session

Syntax
stop(ctrl)

Description
stop(ctrl) stops a persistence service represented by ctrl and detaches it from a current
MATLAB session.

• You cannot stop a service that has not been started.
• You can only stop a service that has been started using start.
• Exiting MATLAB will automatically call stop on all persistence services that were started using

start.

Examples

Stop a Persistence Service

Stop a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then stop it.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
stop(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: stop(ctrl)

See Also
attach | detach | restart | start

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-16

restart
Restart a persistence service and attach it to a MATLAB session

Syntax
restart(ctrl)

Description
restart(ctrl) restarts a persistence service represented by ctrl. You only restart a services you
originally started using start.

Examples

Restart a Persistence Provider

Restart a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then restart it.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
restart(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: restart(ctrl)

See Also
attach | detach | start | stop

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 restart

8-17

ping
Test whether the persistence service is reachable

Syntax
ping(ctrl)

Description
ping(ctrl) tests whether the persistence service is reachable. In order to ping a persistence
service, it must be started and attached to yourMATLAB session.

Examples

Ping Persistence Service

Test whether the persistence service is reachable.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can ping the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
ping(ctrl)

Sending ping to Redis on localhost:4519.
Redis service running on localhost:4519.

ans =

 logical

 1

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: ping(ctrl)

See Also
restart | start | stop

Topics
“Use a Data Cache to Persist Data” on page 7-2

8 Persistence Functions

8-18

Introduced in R2018b

 ping

8-19

version
Version number for persistence provider

Syntax
version(ctrl)

Description
version(ctrl) returns the version number for the persistence provider. In order to get the version
number of the persistence provider, the persistence service must be started and attached to
yourMATLAB session.

Examples

Get Version Number

Get the version number of the persistence provider that the persistence service is connected to.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can get the version number.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
version(ctrl)

Redis version: 3.0.504

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: version(ctrl)

See Also
restart | start | stop

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-20

bytes
Return the number of bytes of storage used by value stored at each key

Syntax
b = bytes(c,keys)

Description
b = bytes(c,keys) returns the number of bytes of storage used by value stored at each key.

Examples

Get the Number of Bytes of Storage Used by a Value in the Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and then get the number of bytes of storage used by a value stored
at each key in the cache. Represent the keys and the bytes used by each value of key as a MATLAB
table.
put (c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
b = bytes(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), bytes(c,keys(c))','VariableNames',{'Keys','Bytes'})

b =

 72 72 72 80 264

tt =

 5×2 table

 Keys Bytes
 __________ ______

 'keyFive' 264
 'keyFour' 80
 'keyOne' 72
 'keyThree' 72
 'keyTwo' 72

Input Arguments
c — Data cache
persistence provider specific data cache object

 bytes

8-21

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

A list of all the keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
b — Number of bytes
numeric row vector

Number of bytes used by each value associated with a key, returned as a numeric row vector.

The byte counts in the output vector appear in the same order as the corresponding input keys. b(i)
is the byte count for keys(i).

See Also
get | keys | length | put

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-22

clear
Remove all keys and values from cache

Syntax
n = clear(c)

Description
n = clear(c) removes all keys and values from cache and returns the number of keys cleared from
the cache in n.

clear removes both local and remote keys and values.

Examples

Clear All Keys and Values from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Clear the cache and check if it is empty.

n = clear(c)
k = keys(c)

n =

 int64

 clear

8-23

 5

k =

 0×1 empty cell array

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
n — Number of key-value pairs
integer

Number of key-value pairs removed, returned as an integer.
Example: 5

See Also
flush | keys | purge | put | remove | retain

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-24

flush
Write all locally modified keys to the persistence service

Syntax
modKeys = flush(c)

Description
modKeys = flush(c) writes all locally modified data in c to the persistence service and returns a
list of keys that have been modified.

flush does not clear the list of retained keys.

Examples

Write All Locally Modified Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Retain a single key locally and verify that it shows up as a local key in the cache object.

retain(c,'keyOne')
display(c)

c =

 flush

8-25

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {'keyOne'}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Modify the local key and flush it to the remote cache. Display the keys and values in the cache as a
MATLAB table.

put(c,'keyOne',rand(3))
modKeys = flush(c)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

modKeys =

 1×1 cell array

 {'keyOne'}

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [3×3 double]
 'keyThree' [30]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
modKeys — Modified keys
cell array of character vectors

A list of the modified keys that were written to the persistence service, returned as a cell array of
character vectors.

8 Persistence Functions

8-26

See Also
clear | keys | purge | remove | retain

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 flush

8-27

get
Fetch values of keys from cache

Syntax
values = get(c,keys)

Description
values = get(c,keys) fetches values of keys specified by keys from the cache specified by c.
Values are returned in the same order as input variables as a cell array.

Examples

Get Values for Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all the keys and associated values and display them as a MATLAB table.
k = keys(c)
v = get(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

k =

 5×1 cell array

 {'keyFive' }
 {'keyFour' }
 {'keyOne' }
 {'keyThree'}
 {'keyTwo' }

v =

 1×5 cell array

 {[10]} {[20]} {[30]} {1×2 double} {5×5 double}

tt =

8 Persistence Functions

8-28

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

A cell array of keys whose values you want to retrieve from cache.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
values — Values
cell array

A list of values associated with keys, returned as a cell array.

See Also
getp | keys | length | put

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 get

8-29

getp
Get the value of a public cache property

Syntax
value = getp(c,property)

Description
value = getp(c,property) gets the value of a public cache property.

Ordinarily, you would be able to access the public properties of a cache object using the dot notation.
For example: c.Connection. However, all cache objects use dot reference and dot assignment to
refer to keys stored in the cache rather than cache object properties. Therefore, c.Connection
refers to a key named Connection in the cache instead of the cache's Connection property.

There is no setp method since all cache properties are read-only.

Examples

Get the Value of a Named, Public, Hidden Property

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retrieve the connection name.

getp(c,'Connection')

ans =

 'myRedisConnection'

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

8 Persistence Functions

8-30

property — Property name
character vector

Property name, specified as a character vector. The common public cache properties are Name,
LocalKeys, and Connection. Provider-specific cache objects may have additional properties. For
example, mps.cache.RedisCache has the properties Host and Port.
Example: 'Connection'

Output Arguments
value — Property value
valid value

A valid property value.

See Also
get | keys | put

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 getp

8-31

isKey
Determine if the cache contains specified keys

Syntax
TF = isKey(c,keys)

Description
TF = isKey(c,keys) returns a logical 1 (true) if c contains the specified key, and returns a
logical 0 (false) otherwise.

If keys is an array that specifies multiple keys, then TF is a logical array of the same size, and TF{i}
is true if keys{i} exists in cache c.

Examples

Determine if the Cache Contains Specified Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Determine if the cache contains specified keys.

TF = isKey(c,{'keyOne','keyTW00','keyTREE','key4','keyFive'})

TF =

 1×5 logical array

 1 0 0 0 1

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

8 Persistence Functions

8-32

keys — Keys to search for
character vector | string | cell array of character vectors or strings

Keys to search for in the cache object c, specified as a character vector, string, or cell array of
character vectors or strings. To search for multiple keys, specify keys as a cell array.
Example: {'keyOne','keyTW00','keyTREE','key4','keyFive'}

Output Arguments
TF — Logical value
logical array

A logical array of the same size as keys indicating which specified keys were found in the data cache.
TF has a logical 1 (true) if c contains a key specified by keys, and a logical 0 (false) otherwise.

See Also
get | keys | length | put

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 isKey

8-33

keys
Get all keys from cache

Syntax
k = keys(c)

Description
k = keys(c) returns a list of all the keys in a data cache as a cell array.

Examples

Get Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all keys.

k = keys(c)

k =

 5×1 cell array

 {'keyFive' }
 {'keyFour' }
 {'keyOne' }
 {'keyThree'}
 {'keyTwo' }

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

8 Persistence Functions

8-34

Output Arguments
k — Keys
cell array of character vectors

Keys from cache, returned as a cell array of character vectors.

See Also
bytes | get | isKey | length | put

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 keys

8-35

length
Number of key-value pairs in the data cache

Syntax
num = length(c)
num = length(c,location)

Description
num = length(c) returns the total number of key-value pairs in the data cache c.

num = length(c,location) returns the numbers of key-value pairs in the data cache c stored
remotely or locally as specified by location.

Examples

Count the Number of Key-Value Pairs

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retain a few keys locally.
retain(c, {'keyOne','keyTwo'})

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Count the number of keys-value pairs.

numTotal = length(c)
numRemote = length(c,'Remote')
numLocal = length(c,'Local')

numTotal =

 int64

 5

numRemote =

 int64

 3

8 Persistence Functions

8-36

numLocal =

 int64

 2

Since keyOne and keyTwo were retained before being written to the cache, they were never written
to the persistence service. They are stored locally until flushed or purged to the persistence service.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

location — Location name
'Remote' | 'Local'

Location of keys specified as an enumerated member of the class mps.cache.Location. The valid
location options are either 'Remote' or 'Local'.
Example: 'Remote'

Output Arguments
num — Number of keys
integer

Total number of key-value pairs in the data cache or the number stored remotely or locally, returned
as an integer.

See Also
bytes | get | isKey | keys | put

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

 length

8-37

countRemoteKeys
Count the number of keys stored on a remote persistence provider

Syntax
count = countRemoteKeys(c)

Description
count = countRemoteKeys(c) counts the number of keys stored on a remote persistence
provider.

Examples

Count the Number of Keys Stored on a Remote Persistence Provider

count = countRemoteKeys(c)

Input Arguments
c — Data cache object
mps.cache.DataCache object

Example:

Output Arguments
count —

See Also

Introduced in R2018b

8 Persistence Functions

8-38

purge
Flush all local data to the persistence service

Syntax
purgedKeys = purge(c)

Description
purgedKeys = purge(c) flushes all local data to the persistence service and removes it locally.

Examples

Flush All Local Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally. For more information, see retain.
retain(c, {'keyOne','keyTwo'})

Modify the local keys and purge the data. Display the keys and values in the cache as a MATLAB
table.

put(c,'keyOne',rand(3),'keyTwo', eye(10))
purgedKeys = purge(c)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})
display(c)

purgedKeys =

 2×1 cell array

 {'keyOne'}
 {'keyTwo'}

tt =

 5×2 table

 Keys Values
 __________ ______________

 purge

8-39

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [3×3 double]
 'keyThree' [30]
 'keyTwo' [10×10 double]

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
purgedKeys — Purged keys
cell array of character vectors

List of keys that were written to the persistence service, returned as a cell array of character vectors.

See Also
clear | flush | keys | length | remove | retain

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-40

put
Write key-value pairs to cache

Syntax
put(c,key1,value1,...,keyN,valueN)
put(c,keySet,valueSet)

Description
put(c,key1,value1,...,keyN,valueN) writes key-value pairs to cache. You can store any type
of MATLAB data in a cache.

put(c,keySet,valueSet) writes key-value pairs to cache with keys from by keySet, each mapped
to a corresponding value from valueSet. The input arguments keySet and valueSet must have the
same number of elements, with keySet having elements that are unique.

Examples

Write Series of Key-Value Pairs to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

 put

8-41

Write Set of Keys and Corresponding Values to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a set of keys and corresponding values to the cache and display them as a MATLAB table.

keySet = {'keyOne','keyTwo','keyThree','keyFour','keyFive'}
valueSet = {10, 20, 30, [400 500], magic(5)}
put(d,keySet,valueSet)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Write Object to Cache

Create a class whose object you want to write to the Redis cache.

classdef BasicClass
 properties
 Value = pi;
 end
 methods
 function r = roundOff(obj)
 r = round([obj.Value],2);
 end
 function r = multiplyBy(obj,n)
 r = [obj.Value] * n;
 end
 end
end

Create an object of the class and assign a value to the Value property,

a = BasicClass
a.Value = 4

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

8 Persistence Functions

8-42

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a key and the object that you created to the cache and retrieve the object.
put(c,'objKey',a)
objVal = get(c,'objKey')

objVal =

 BasicClass with properties:

 Value: 4

The output shows that there is no loss of information during writing an object to the cache and
retrieving the object from the cache. The retrieved object contains the same information as the input
object.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

key — Key
character vector

Key to add, specified as a character vector.
Example: 'keyFour'

value — Value
array

Value, specified as an array. value can be any valid MATLAB data type, including MATLAB objects.
Example: [400, 500]

keySet — Keys
cell array of character vectors

Keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

valueSet — Values
cell array

Values, specified as comma-separated cell array. Each value may be any valid MATLAB data type,
including MATLAB objects.
Example: {10, 20, 30, [400 500], magic(5)}

 put

8-43

See Also
bytes | clear | get | keys | length | remove

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-44

remove
Remove keys from cache

Syntax
num = remove(c,keys)

Description
num = remove(c,keys) removes keys and associated values from cache. There is no way to
recover removed keys.

Examples

Remove Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Remove two keys from cache c and display the remaining keys and values in the cache as a MATLAB
table.

num = remove(c,{'keyThree','keyFour'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

num =

 int64

 remove

8-45

 2

tt =

 3×2 table

 Keys Values
 _________ ____________

 'keyFive' [5×5 double]
 'keyOne' [10]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys to remove
cell array of character vectors

Keys to remove from cache, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
num — Number of keys removed
integer

Number of keys removed, returned as an integer.

See Also
clear | get | keys | purge | put | retain

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-46

retain
Store remote keys from cache locally or return locally stored keys

Syntax
retain(c,remoteKeys)
localKeys = retain(c)

Description
retain(c,remoteKeys) stores keys from cache locally.

localKeys = retain(c) returns a cell array of keys stored locally.

Examples

Store Keys from Cache Locally and Check Local Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally and check local keys.
retain(c,{'keyThree','keyFour'})
localKeys = retain(c)

localKeys =

 1×2 cell array

 {'keyThree'} {'keyFour'}

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

 retain

8-47

remoteKeys — Keys
cell array of character vectors

Remote keys to store locally, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
localKeys — Keys
cell array of character vectors

Locally stored keys, returned as a cell array of character vectors.

Tips
• As a performance optimization you may choose to temporarily store a set of keys and their values

in your MATLAB session or worker instead of the persistence service. Keys retained in the this
fashion will be automatically written to the persistence service (see flush) when MATLAB exits or
when the first function call returns.

• Manually control the lifetime of retained keys with the flush and purge methods.

See Also
clear | flush | purge | remove

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-48

mps.sync.mutex
Create a persistence service mutex

Syntax
lk = mps.sync.mutex(mutexName,'Connection',connectionName,Name,Value)

Description
lk = mps.sync.mutex(mutexName,'Connection',connectionName,Name,Value) creates a
database advisory lock object.

Examples

Create a Redis Mutex

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk =

 TimedRedisMutex with properties:

 Expiration: 10
 ConnectionName: 'myRedisConnection'
 MutexName: 'myMutex'

Input Arguments
mutexName — Mutex name
character vector

Name of persistence service mutex, specified as a character vector.
Example: 'myMutex'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

 mps.sync.mutex

8-49

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Expiration', 10

Expiration — Time in seconds
positive integer

Expiration time in seconds after the lock is acquired.

Other clients will be able to acquire the lock even if you do not release it.
Example: 'Expiration', 10

Output Arguments
lk — Mutex object
persistence service mutex object

A persistence service mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use MATLAB as your persistence provider, lk will be a
mps.sync.TimedMATFileMutex object.

Tips
• A persistence service mutex allows multiple clients to take turns using a shared resource. Each

cooperating client creates a mutex object with the same name using a connection to a shared
persistence service. To gain exclusive access to the shared resource, a client attempts to acquire a
lock on the mutex. When the client finishes operating on the shared resource, it releases the lock.
To prevent lockouts should the locking client crash, all locks expire after a certain amount of time.

• Acquiring a lock on a mutex prevents other clients from acquiring a lock on that mutex but it does
not lock the persistence service or any keys or values stored in the persistence service. These
locks are advisory only and are meant to be used by cooperating clients intent of preventing data
corruption. Rogue clients will be able to corrupt or delete data if they do not voluntarily respect
the mutex locks.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | own | release

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-50

mps.sync.TimedRedisMutex
Represent a Redis persistence service mutex

Description
mps.sync.TimedRedisMutex is a synchronization primitive used to protect data in a Redis
persistence service from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedRedisMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of mutex
character vector

This property is read-only.

Name of mutex, returned as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

 mps.sync.TimedRedisMutex

8-51

Examples
Create a Redis Lock Object

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk =

 TimedRedisMutex with properties:

 Expiration: 10
 ConnectionName: 'myRedisConnection'
 MutexName: 'myMutex'

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.mutex | own | release

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-52

mps.sync.TimedMATFileMutex
Represent a MAT-file persistence service mutex

Description
mps.sync.TimedMATFileMutex is synchronization primitive used to protect data in a MAT-file
database from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedMATFileMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of lock
character vector

This property is read-only.

Name of advisory lock, specified as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

 mps.sync.TimedMATFileMutex

8-53

Examples
Create a MAT-File Lock Object
mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')
start(mctrl)
lk = mps.sync.mutex('myMATFileMutex','Connection','myMATFileConnection')

lk =

 TimedMATFileMutex with properties:

 Expiration: 10
 ConnectionName: 'myMATFileConnection'
 MutexName: 'myMATFileMutex'

See Also
acquire | mps.sync.TimedRedisMutex | mps.sync.mutex | own | own | release | release

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-54

acquire
Acquire advisory lock on persistence service mutex

Syntax
TF = acquire(lk,timeout)

Description
TF = acquire(lk,timeout) acquires an advisory lock and returns a logical 1 (true) if the lock
was successful, and a logical 0 (false) otherwise. If the lock is unavailable, acquire will continue
trying to acquire it for timeout seconds.

Examples

Apply Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

TF =

 logical

 1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

timeout — Retry duration
positive integer

Duration after which to retry acquiring lock.

 acquire

8-55

Example: 20

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if acquiring the advisory lock was successful, and a logical 0 (false)
otherwise.

See Also
mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex | own |
release

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-56

own
Check ownership of advisory lock on a persistence service mutex object

Syntax
TF = own(lk)

Description
TF = own(lk) returns a logical 1 (true) if you own an advisory lock on the persistence service
mutex, and returns a logical 0 (false) otherwise.

Examples

Check If You Own the Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Check if you own the advisory lock.

TF = own(lk)

TF =

 logical

 0

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

Output Arguments
TF — Logical value
logical array

 own

8-57

TF has a logical 1 (true) if you own the advisory lock on the persistence service mutex, and a
logical 0 (false) otherwise.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex |
release

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-58

release
Release advisory lock on persistence service mutex

Syntax
TF = release(lk)

Description
TF = release(lk) releases an advisory lock on a persistence service mutex. If the lock expires
before you release it, release returns a logical 0 (false). If this occurs, it may indicate potential
data corruption.

Examples

Release Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

Release lock.

TF = release(lk)

TF =

 logical

 1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

 release

8-59

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if releasing the advisory lock was successful, and a logical 0 (false)
otherwise.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex |
own

Topics
“Use a Data Cache to Persist Data” on page 7-2

Introduced in R2018b

8 Persistence Functions

8-60

MATLAB Client

• “Connect MATLAB Session to MATLAB Production Server” on page 9-2
• “Execute Deployed MATLAB Functions” on page 9-5
• “Configure Client-Server Communication” on page 9-11
• “Application Access Control” on page 9-14
• “Execute Deployed Functions Using HTTPS” on page 9-17
• “Manage Add-Ons” on page 9-20
• “Deploy Add-Ons” on page 9-25

9

Connect MATLAB Session to MATLAB Production Server
MATLAB Client for MATLAB Production Server makes the functions deployed on on-premises
MATLAB Production Server instances available in your MATLAB session.

When to Use MATLAB Client for MATLAB Production Server
MATLAB Client for MATLAB Production Server enables you to do the following:

• Scale with demand: Shift computationally intensive work from MATLAB desktop to server-class
machines or scalable infrastructure.

• Centralize algorithm management: Install MATLAB functions that contain your algorithms on a
central server and then run them from any MATLAB desktop, ensuring consistent usage and
making upgrades easier.

• Protect intellectual property: Protect algorithms deployed to the server using encryption.

Using MATLAB Client for MATLAB Production Server is less suitable for algorithms that have the
following characteristics:

• The algorithms are called several times from inside a loop.
• The algorithms require resources such as files or hardware that are available only on a single

machine or to a single person.
• The algorithms rely on the MATLAB desktop or MATLAB graphics, or use data from a MATLAB

session.

Install MATLAB Client for MATLAB Production Server
Install the MATLAB Client for MATLAB Production Server support package from the MATLAB Add-On
Explorer. For information about installing add-ons, see “Get and Manage Add-Ons” (MATLAB).

After your installation is complete, find examples in support_package_root\toolbox\mps
\matlabclient\demo, where support_package_root is the root folder of support packages on
your system. Access the documentation by entering the doc command at the MATLAB command
prompt or by clicking the Help button. In the Help browser that opens, navigate to MATLAB Client for
MATLAB Production Server under Supplemental Software.

Connect MATLAB Session to MATLAB Production Server
MATLAB Client for MATLAB Production Server uses MATLAB add-ons to connect a MATLAB session
to MATLAB functions deployed on server instances. The connection between a server instance and a
MATLAB desktop session consists of two parts:

1 A MATLAB Production Server deployable archive that publishes one or more functions.
2 A MATLAB add-on that makes those functions available in MATLAB.

You must include a MATLAB function signature file when you create the deployable archive. For more
information, see “MATLAB Function Signatures in JSON”. The server instance that hosts the
deployable archive must have the discovery service enabled. For more information, see “Discovery
Service”.

9 MATLAB Client

9-2

You must install a MATLAB Production Server add-on to connect a MATLAB desktop session to an
archive deployed on a server instance. For example, for an archive mathfun deployed to a server
instance running on myhost.mycompany.com at port 31415, you can install the corresponding add-
on with a single command:

>> prodserver.addon.install('mathfun','myhost.mycompany.com',31415);

Then, you can call the functions in that archive from the MATLAB desktop, script, and function files.
For example, if the deployed archive contains a function mymagic that takes an integer input and
returns a magic square, you can call mymagic from the MATLAB command prompt.

>> mymagic(3)

For a detailed example, see “Execute Deployed MATLAB Functions” on page 9-5.

System Requirements
MATLAB Client for MATLAB Production Server has the same system requirements as MATLAB. For
more information, see System Requirements for MATLAB.

Synchronous Function Execution
MATLAB programs are synchronous. Given a sequence of MATLAB function calls, MATLAB waits for
each function to complete before calling the next one. Therefore, the MATLAB Production Server add-
on functions are also synchronous. The add-ons use the MATLAB Production Server RESTful API for
synchronous function execution. For more information about the RESTful API, see “Synchronous
Execution”.

Supported Data Types
MATLAB Client for MATLAB Production Server supports all data types that the MATLAB Production
Server RESTful API supports, which are as follows:

• Numeric types: double, single, all integer types, complex numbers, NaN, Inf and -Inf.
• Character arrays
• Logical
• Cell arrays
• Structures
• String arrays
• Enumerations
• Datetime arrays

See Also
prodserver.addon.install

More About
• “Execute Deployed MATLAB Functions” on page 9-5

 Connect MATLAB Session to MATLAB Production Server

9-3

https://www.mathworks.com/support/requirements/matlab-system-requirements.html

• “Get and Manage Add-Ons” (MATLAB)
• “Execute Deployed Functions Using HTTPS” on page 9-17

9 MATLAB Client

9-4

Execute Deployed MATLAB Functions

In this section...
“Install MATLAB Client for MATLAB Production Server” on page 9-5
“Deploy MATLAB Function on Server” on page 9-5
“Install MATLAB Production Server Add-On for the Deployable Archive” on page 9-6
“Manage Installed Add-On” on page 9-8
“Invoke Deployed MATLAB Function” on page 9-9

This example shows how to use MATLAB Client for MATLAB Production Server to invoke a MATLAB
function deployed on an on-premises MATLAB Production Server instance.

MATLAB Client for MATLAB Production Server uses MATLAB Production Server add-ons to
communicate between a MATLAB client and a server instance. A MATLAB Production Server add-on
makes the functions in an archive deployed on MATLAB Production Server available in MATLAB. A
deployed archive and its corresponding MATLAB Production Server add-on have the same name.

Installing the MATLAB Production Server add-on in your MATLAB desktop environment allows you to
use the functions from a deployed archive in MATLAB. Installing a MATLAB Production Server add-on
creates proxy functions of the deployed functions locally. The proxy functions manage communication
between the deployed MATLAB functions and the clients that invoke the deployed functions. A proxy
function and its corresponding deployed function have the same name. Since the proxy functions are
MATLAB functions, you can call them from the MATLAB command prompt, other functions, or scripts.
You can also compile the functions and scripts that contain the proxy functions. You can install
MATLAB Production Server add-ons using the prodserver.addon.install function at the
MATLAB command prompt or using the MATLAB Production Server Add-On Explorer app.

Calling the proxy MATLAB function sends an HTTP request across the network to an active MATLAB
Production Server instance. The server instance calls the MATLAB function in the deployable archive
and passes to it the inputs from the HTTP request. The return value of the deployed MATLAB function
follows the same path over the network in reverse.

The following example describes how to install MATLAB Production Server add-ons and execute a
deployed MATLAB function.

Install MATLAB Client for MATLAB Production Server
Install the MATLAB Client for MATLAB Production Server support package to your MATLAB desktop
environment using the MATLAB Add-On Explorer. For information about installing add-ons, see “Get
and Manage Add-Ons” (MATLAB).

Deploy MATLAB Function on Server
1 Write a MATLAB function mymagic that uses the magic function to create a magic square.

function m = mymagic(in)
 m = magic(in);
end

 Execute Deployed MATLAB Functions

9-5

2 Package the function mymagic in an archive named mathfun. You must include a MATLAB
function signature file when you create the archive. For information about creating the function
signature file, see “MATLAB Function Signatures in JSON”.

3 Deploy the archive mathfun on a running MATLAB Production Server instance. The server
instance must have the discovery service enabled. For information about enabling the discovery
service, see “Discovery Service”. The server administrator typically deploys the archive and
configures the server.

For information on how to create and deploy the archive, see “Create Deployable Archive for
MATLAB Production Server” on page 2-2 and “Share Deployable Archive”.

Install MATLAB Production Server Add-On for the Deployable Archive
From your MATLAB desktop environment, install the MATLAB Production Server add-on for the
deployed archive using the MATLAB Production Server Add-On Explorer. Installing the add-on
makes the MATLAB functions deployed on the server available to your MATLAB client programs. The
MATLAB Production Server Add-On Explorer is different from MATLAB Add-On Explorer.

Launch MATLAB Production Server Add-On Explorer

From a MATLAB command prompt, launch the MATLAB Production Server Add-On Explorer
using the command prodserver.addon.Explorer.

>> prodserver.addon.Explorer

9 MATLAB Client

9-6

Add Server Information

In the MATLAB Production Server Add-On Explorer, add information about the server that hosts
the deployable archive mathfun.

1 In the Servers section, click New.
2 Enter the host name of the server in the Host box and the port number in the Port box. For

example, for a server running on your local machine on port 64692, enter localhost for Host
and 64692 for Port.

3 Click OK to add the server.
4 After you add the server, you can click Check Status to check the server status.

You can add multiple servers.

Install Add-On

After you add a server, the Servers and Add-Ons section lists the server and the MATLAB
Production Server add-ons that can communicate with the server. If you add multiple servers, this
sections lists all the servers and the add-ons that can communicate with each server grouped under
the server that hosts them.

Install the mathfun add-on to make the MATLAB function mymagic from the deployable archive
mathfun available in your MATLAB client programs.

1 Select the mathfun add-on.
2 In the Add-Ons section, click Install. This installs the add-on.

 Execute Deployed MATLAB Functions

9-7

Manage Installed Add-On
After you install a MATLAB Production Server add-on, the MATLAB Add-On Manager lists it. You can
perform tasks such as enabling, disabling and uninstalling the add-on, and viewing details about the
add-on. Viewing the add-on in Add-On Explorer is not supported.

9 MATLAB Client

9-8

Invoke Deployed MATLAB Function
Installing an add-on creates proxy MATLAB functions locally that let you invoke MATLAB functions
deployed on the server. You can call the proxy functions interactively from the MATLAB command
prompt, other MATLAB functions, scripts, or standalone applications that in turn invoke the deployed
MATLAB functions.

Invoke Deployed MATLAB Function from Command Line

For example, to invoke the mymagic function hosted on the server, you can call the proxy mymagic
function from the matfun add-on at the MATLAB command prompt.

>> mymagic(3)

This prints a 3 by 3 magic square.

Invoke Deployed MATLAB Function from MATLAB Function

You can call the installed add-on proxy function in your MATLAB function and script. For example,
write a simple MATLAB program mytranspose.m that creates a transpose of the magic square that
you created using the proxy function mymagic.

function mytranspose
 A = mymagic(5);
 A.'
end

Running mytranspose prints the transpose of a 5 by 5 magic square.

>> mytranspose

Invoke Deployed MATLAB Function from Standalone Executable

You can call the installed add-on proxy function in your MATLAB function and then create a
standalone executable from the MATLAB function. For example, you can create a standalone
executable from the mytranspose MATLAB client function using MATLAB Compiler.

>> mcc -m mytranspose

Run the standalone executable mytranspose at the system command prompt. You might need to
install MATLAB Runtime if it is not installed on your machine. For more information, see MATLAB
Runtime.

C:\mytranspose> mytranspose

This prints a transpose of a 5 by 5 magic square.

You can configure the standalone executable to use time out values other than the default or use a
different address for the server. For more information, see “Configure Client-Server Communication”
on page 9-11.

You can find more examples in the support_package_root\toolbox\mps\matlabclient\demo
folder, where support_package_root is the root folder of support packages on your system. You
can access the documentation by entering the doc command at the MATLAB command prompt or
clicking the Help button in MATLAB desktop. In the Help browser that opens, navigate to MATLAB
Client for MATLAB Production Server under Supplemental Software.

 Execute Deployed MATLAB Functions

9-9

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

See Also
prodserver.addon.Explorer | prodserver.addon.install

More About
• “Connect MATLAB Session to MATLAB Production Server” on page 9-2
• “Get and Manage Add-Ons” (MATLAB)
• “Discovery Service”
• “MATLAB Function Signatures in JSON”

9 MATLAB Client

9-10

Configure Client-Server Communication
You can override the default configuration that MATLAB Production Server add-ons use for client-
server communication by setting environment variables and updating the MATLAB Production Server
add-on configuration file located on the client machine. You might want to override the default
configuration if your network is reliable, if your application is time critical, or if you want to change
the server information for add-ons packaged into standalone executables.

Configure Timeouts and Retries
When you use MATLAB Client for MATLAB Production Server, the proxy functions in the MATLAB
Production Server add-ons communicate with the functions of an archive deployed to a MATLAB
Production Server instance. If the server takes too long to send a response, the client request times
out. When a timeout occurs, the add-ons can report the error or silently try sending the request
again.

MATLAB Production Server add-ons support two types of timeouts and one retry strategy. To override
the default timeout durations and the default strategy for request retries, set MATLAB Production
Server add-on environment variables.

Set Initial TCP Connection Timeout

Set the PROSERVER_ADDON_CONNECT_TIMEOUT environment variable to the number of seconds that
an add-on function must wait before timing out when attempting to connect to a MATLAB Production
Server instance. This is the initial TCP connection timeout.

By default, the operating system sets the TCP connection timeout value, typically, to 60 seconds or
less, and might limit the value that you can set.

Typically, you do not need to set this value. If the server does not respond within the set time period,
the add-ons generate an MPS:MATLAB:AddOn:RequestTimeout error.

Set Function Processing Timeout

Set the PRODSERVER_ADDON_FUNCTION_TIMEOUT environment variable to the number of seconds
that an add-on function must wait for the deployed function to complete processing, which includes
making the initial connection, and returning a response to the client.

The default behavior is to wait forever for the function to finish processing and never time out.

If your network is reliable or your application is time critical, you might set the environment variable
so that the client request can time out earlier. Since the processing time for the add-on function
includes the time to make a TCP connection with the server, do not set
PRODSERVER_ADDON_FUNCTION_TIMEOUT to a non-zero value smaller than
PRODSERVER_ADDON_CONNECT_TIMEOUT. If the deployed function does not return a complete
response within the timeout value that you set, an MPS:MATLAB:AddOn:RequestTimeout error
occurs.

Configure Function Retries

Set the PRODSERVER_ADDON_FUNCTION_RETRIES environment variable to the number of times that
an add-on retries a single function call that times out. The add-on retries only those functions that
time out. The add-on generates an error if a function fails for any other reason.

 Configure Client-Server Communication

9-11

The default behavior specifies not to retry functions that time out and to report
MPS:MATLAB:AddOn:RequestTimeout errors on the first timeout.

If the number of timeouts exceeds the value that you set, the add-on reports an
MPS:MATLAB:AddOn:RequestTimeout error.

Set Environment Variables

To control the timeouts in a MATLAB session, set the environment variables using the setenv
function. For example:

Retry three times on timeout for the MATLAB function mandelflake:

>> setenv('PRODSERVER_ADDON_FUNCTION_RETRIES','3')
>> mandelflake

To control the timeouts in a standalone executable or software component, set the environment
variables using commands specific to your operating system, typically setenv on Linux and macOS,
and set on Windows. For example:

• Retry three times on timeout for the Linux standalone executable mandelflake:

% setenv PRODSERVER_ADDON_FUNCTION_RETRIES 3
% mandelflake

• Retry three times on timeout for a Windows standalone executable mandelflake.exe:

C:\> set PRODSERVER_ADDON_FUNCTION_RETRIES=3
C:\> mandelflake.exe

Update Server Configuration
The MATLAB Production Server add-on configuration file specifies the association and dependency
between the MATLAB Production Server add-on proxy functions and the MATLAB Production Server
deployable archives from which you install the proxy functions. By default, the add-on proxy functions
communicate with the MATLAB Production Server instance from which you install them. If the
network address or the application access control configuration of the server instance changes, you
can modify the configuration file to include the updated server information. For example, the network
address of the server can change if you move from a testing environment to a production
environment. The access control configuration can change if the Azure AD app registration
credentials of the server change.

The configuration file lets you easily change server-specific information without rebuilding the
deployable archive or reinstalling the add-on, since the mapping between an add-on and an archive is
in the configuration file that is external to both. This external mapping is especially useful when you
want to change the server information for add-on proxy functions that are packaged into a standalone
executable or deployable software component, since standalone executables and deployable software
components can also be shared and used on machines that are different from those that package
them.

Update Add-On Configuration File

The default name of the add-on configuration file is prodserver_addon_config.json. A sample
configuration file follows.

{
 "Installed": {

9 MATLAB Client

9-12

 "Scheme": "http",
 "Host": "localhost",
 "Port": 9990,
 "Config": {
 "AccessTokenPolicy":"none",
 "ClientID": "",
 "IssuerURI": "",
 "ServerID": ""
 },
 "AddOns": {
 "name": "fractal (R2020b)",
 "uuid": "e3325lo6-4297-47d2-9ec8-9df64195fce3",
 "archiveID": "fractal_311a3f55107d8d603cc3d91707bf2feb"
 }
 },
 "SchemaVersion": 1.2
}

The sample configuration file describes a single add-on fractal that requires MATLAB Runtime
version R2020b and a deployable archive fractal hosted by a MATLAB Production Server instance
at network address locahost:9990.

To update the network address of the server, update the values corresponding to the Host and Port
fields. To update the access control configuration of the server, update the values in the Config
object. If you do not manage the server, you can obtain these values from the server administrator.
For more information about configuring access control when using the add-ons, see “Application
Access Control” on page 9-14.

Update Add-On Configuration File Location

The default location of the add-on configuration file is in the MATLAB user preference directory of the
machine on which the add-on function is installed. To locate the preferences directory on your
machine, run prefdir at the MATLAB command prompt.

You can save the add-on configuration file in a different location and also change the name of the add-
on configuration file. To specify a different location or name than the default, set the
PRODSERVER_ADDON_CONFIG environment variable. When setting the variable, you must specify the
full path to the file from the root of the file system. You might save the add-on configuration file in a
different location when you want to update the server configuration for add-on proxy functions that
are packaged into standalone executables or shared components.

See Also

More About
• “Execute Deployed MATLAB Functions” on page 9-5
• “Execute Deployed Functions Using HTTPS” on page 9-17
• “Application Access Control” on page 9-14
• “Manage Add-Ons” on page 9-20

 Configure Client-Server Communication

9-13

Application Access Control
MATLAB Production Server uses Azure Active Directory (Azure AD) to restrict access to deployed
applications to only certain groups of users. If access control is enabled on the server that a MATLAB
client application communicates with, the client application must send a bearer token when it sends
requests to the server. The bearer token identifies the user that is executing the client application.
Based on the bearer token, the server grants or denies access to client applications for executing
deployed applications.

Prerequisites
1 Access control is enabled on the server. For more information, see “Application Access Control”.
2 The MATLAB Production Server add-on of the deployed application is installed on the client

machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 9-5.

Configure Access Control
Configure access control on the client machine to send a bearer token in server requests. You can
send either a system-generated bearer token or specify a bearer token.

Use System-generated Bearer Token

To enable a client application that you write using MATLAB Client for MATLAB Production Server to
send a system-generated bearer token to a server, you must set the Azure AD app registration
credentials and set an access token policy. Obtain the ServerID, ClientID and IssuerURI of the
Azure AD apps that your organization uses for user authorization from the MATLAB Production
Server administrator or the Azure AD administrator of your organization. Typically, you must set
these credentials once for each server instance that your MATLAB client applications communicate
with.

• ServerID — Application ID of the server app registered on Azure AD that is used for user
authorization. The ServerID value must be the same as the appID value in the access control
configuration file present on the MATLAB Production Server instance. For more information, see
“Access Control Configuration File”.

• ClientID — Application ID of the client app registered on Azure AD that is used for user
authorization.

• IssuerURI — URI followed by the Azure AD tenant ID that the client uses to generate a bearer
token for a user.

Run the prodserver.addon.accessTokenPolicy function at the MATLAB command prompt to
set the Azure AD app registration credentials and specify the automatic access token policy to use a
system-generated bearer token. Also specify as arguments, the host name and port of the MATLAB
Production Server instance that your add-on communicates with.

>> prodserver.addon.accessTokenPolicy('localhost',51133,'automatic',...
'ClientID','0d963963-e439-41d0-822c-b15ayu8937c3',...
'ServerID','d19d8po0-7977-4213-a05a-10kjna82fbaf',...
'IssuerURI','https://login.microsoftonline.com/yourcompany.com')

The MATLAB Production Server Add-On Explorer does not support setting the Azure AD app
registration credentials.

9 MATLAB Client

9-14

Specify Bearer Token

If you want to specify your own bearer token, you can use the
prodserver.addon.accessTokenPolicy function to do so.

>> prodserver.addon.accessTokenPolicy('localhost',51133,'your_access_token')

Set Access Token Policy Using MATLAB Production Server Add-On Explorer App

You can use the MATLAB Production Server Add-On Explorer to switch between using a system-
generated bearer token or specifying your own bear token.

1 In the MATLAB Production Server Add-On Explorer app, select the server that you want your
client applications to communicate with, then click Config.

2 In the dialog box that opens, configure the access token policy. Choose Generate token
automatically to let the software generate an access token for you, or choose Use this token
and specify the access token. Click OK to save your selection.

You must set the serverID, clientID, and IssuerURI parameters from the command line
before making a selection to use the system-generated token.

 Application Access Control

9-15

See Also
prodserver.addon.accessTokenPolicy

More About
• “Application Access Control”
• “Execute Deployed MATLAB Functions” on page 9-5

9 MATLAB Client

9-16

Execute Deployed Functions Using HTTPS
Connecting to a MATLAB Production Server instance over HTTPS provides a secure channel for
executing MATLAB functions. To establish an HTTPS connection with a MATLAB Production Server
instance:

1 Ensure that the server instance is configured to use HTTPS. For more information, see “Enable
HTTPS”.

2 If the server instance uses a self-signed SSL certificate or if the root certificate of the server is
not present in the trust store of the client machine, you must save the server certificate on the
client machine.

3 Install MATLAB Production Server add-ons using HTTPS.

MATLAB Client for MATLAB Production Server does not support sending a client certificate to the
server. Therefore, you cannot use MATLAB Client for MATLAB Production Server to install add-ons
from a server or execute functions deployed to a server that has client authentication enabled.

Save SSL Certificate of Server
Before your client application can send HTTPS requests to a server instance, the root SSL certificate
of the server must be present in the Windows Trusted Root Certification Authorities certificate store
or Linux trust store of the client machine. If the server uses a self-signed SSL certificate or if the root
certificate of the server signed by a certificate authority (CA) is not present in the Windows certificate
store, obtain the server certificate from the MATLAB Production Server administrator or export the
certificate using a browser, then add it to the certificate store or the trust store.

Export and Save SSL Certificate

You can use any browser to save the server certificate on the client machine. The procedure to save
the certificate using Google Chrome™ follows.

1 Navigate to the server instance URL https://your_server_FQDN:port/api/health using
Google Chrome.

2 In the Google Chrome address bar, click the padlock icon or the warning icon, depending on
whether the server instance uses a CA-signed SSL certificate or a self-signed SSL certificate.

3 Click Certificate > Details > Copy to File. Doing so opens a wizard that lets you export the
SSL certificate. Click Next.

4 Select the format to export the certificate and click Next.
5 Specify the location and file name to export the certificate, then click Next.
6 Click Finish to complete exporting the certificate.

Add Certificate to Windows Certificate Store

You can use a certificate management tool or Microsoft Management Console (MMC) to add the
server certificate to the Windows certificate store. The procedure to add the certificate using MMC
follows.

1 Open MMC from your Windows machine.
2 Click File > Add/Remove Snap-in. Doing so opens the Add or Remove Snap-ins window.
3 In the Add or Remove Snap-ins window:

 Execute Deployed Functions Using HTTPS

9-17

a Click Certificates from the left pane, then click Add.
b Select Computer account, then click Finish. Doing so adds Certificates(Local

Computer) to the right pane.
c Click OK. Doing so takes you to the home window.

4 In the left pane of the home window, under Console Root, double click Certificates(Local
Computer). Doing so opens all the certificate folders located in the local machine.

5 Select Trusted Root Certification Authorities > More Actions > All Tasks > Import. Doing
so opens the Certificate Import Wizard.

6 Click Next, then select the location of your server certificate.
7 Click Next to import the certificate in the Trusted Root Certification Authorities certificate store.

Specify Custom Path to Certificate

MATLAB Client for MATLAB Production Server searches the default trust store for the server
certificate, but also supports specifying the full path to a certificate file. Typically, you want to specify
a path to the server certificate during testing. To do so, set the CertificateFile property using the
prodserver.addon.set function. The value of the CertificateFile property persists between
MATLAB sessions.

>> prodserver.addon.set('CertificateFile','/path/to/my/certificate.pem')

Install Add-On Using HTTPS
The default protocol for communication with the server is HTTP. If the server uses HTTPS, you must
install an add-on from that server using HTTPS. Your MATLAB session can use HTTP with one server
and HTTPS with another server simultaneously.

Install Add-On Using Command Line

Use the prodserver.addon.install function and set the TransportLayerSecurity property to
true to use HTTPS.

>> prodserver.addon.install('fractal','localhost', 9920, 'TransportLayerSecurity', true)

Install Add-On Using Graphical Interface

1 In the Servers section in the MATLAB Production Server Add-On Explorer app, click New.
Doing so opens a dialog box where you enter details about the MATLAB Production Server
instance that the MATLAB client wants to communicate with using HTTPS.

2 Enter the host name and port number of the server instance, select HTTPS, then click OK. Doing
so enables HTTPS communication between your MATLAB client and the server instance.

Manage Default Protocol for Client-Server Communication
Set the protocol for client-server communication to HTTPS by using the prodserver.addon.set
function and setting the TransportLayerSecurity property to true. The protocol setting persists
between MATLAB sessions.

prodserver.addon.set('TransportLayerSecurity', true);

9 MATLAB Client

9-18

View the current value of the TransportLayerSecurity property using the
prodserver.addon.get function.

prodserver.addon.get('TransportLayerSecurity');

ans =

 logical
 1

See Also
prodserver.addon.accessTokenPolicy | prodserver.addon.get |
prodserver.addon.install | prodserver.addon.set

External Websites
• “Execute Deployed MATLAB Functions” on page 9-5
• “Application Access Control” on page 9-14

 Execute Deployed Functions Using HTTPS

9-19

Manage Add-Ons
The MATLAB Production Server Add-On Explorer provides a graphical interface to find, install,
and manage MATLAB Production Server add-ons. It requires MATLAB Client for MATLAB Production
Server. To open MATLAB Production Server Add-On Explorer, enter
proserver.addon.Explorer at the MATLAB command prompt.

• The Servers section lets you add and remove MATLAB Production Server instances from which
you can install add-ons, check server status, and configure access control for executing deployed
applications.

• The Add-Ons section provides options to install and remove MATLAB Production Server add-ons,
view help text for the add-ons, and manage add-ons using the MATLAB Add-On Manager.

• The Servers and Add-Ons section lists the add-ons grouped by server.

Install Add-Ons
Installing MATLAB Production Server add-ons in your MATLAB desktop environment allows you to
use the functions from an archive deployed to a MATLAB Production Server instance in MATLAB. You
must add information about the server instances before you can install add-ons from them.

Add Server

1 In the Servers section of MATLAB Production Server Add-on Explorer, click New.
2 Enter the host name of the server in the Host box. Use a name such as localhost or

addons.yourcompany.com, or a numeric address such as 127.0.0.1.
3 Enter the port number in the Port box. Port numbers are integers between 1 and 65535.
4 Select the protocol, HTTP or HTTPS, that the server uses. You can find which protocol a server

expects by examining the MATLAB Production Server configuration file main_config or by
making a request to the GET Discovery Information from a browser.

9 MATLAB Client

9-20

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server
https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

5 Select Add server even if unavailable, only if you want to add a server that is not yet available.
You might do this if you plan to start the server later.

6 Click OK to add the server.

To check the server status, select the server from the Servers and Add-Ons section, then click
Check Status.

To remove a server, select the server from the Servers and Add-Ons section, then click Remove.
Removing a server also removes the add-ons installed from the server.

Install Add-On

After you add a server, the Servers and Add-Ons section lists the server and the MATLAB
Production Server add-ons that can communicate with the server. If you add multiple servers, this
sections lists all the servers and the add-ons that can communicate with each server, grouped under
the server that hosts them.

To install an add-on, select the add-on from the Servers and Add-Ons section, then click Install in
the Add-Ons section.

The following graphic shows a server instance running at http:localhost:64692 that has the
mpsTestdata and the fractal add-ons available. The check mark indicates that the mpsTestdata
add-on is installed on the client machine.

 Manage Add-Ons

9-21

For information about installing add-ons from the MATLAB command prompt, see
prodserver.addon.install.

For information about executing deployed applications using the installed add-ons, see “Execute
Deployed MATLAB Functions” on page 9-5 and “Execute Deployed Functions Using HTTPS” on page
9-17.

Remove Add-Ons
To remove add-ons, select them from the Servers and Add-Ons section, then click Remove from the
Add-Ons section. Functions from removed add-ons are no longer available to MATLAB.

For information about uninstalling add-ons from the MATLAB command prompt, see
prodserver.addon.uninstall.

Get Information about Add-Ons
To view information about an add-on, select the add-on from the Servers and Add-Ons section, then
click Help from the Add-Ons section. Add-Ons do not need to be installed for you to browse their
help.

Select a function to view the help text written by the function author.

The following graphic shows the help text for the mandelbrot function present in the fractal add-
on.

9 MATLAB Client

9-22

Manage Add-Ons
After you install a MATLAB Production Server add-on, the MATLAB Add-On Manager lists it. You
can perform tasks such as enabling, disabling and uninstalling the add-on, and viewing add-on
details.

Removing an add-on from the MATLAB Production Server Add-On Explorer is equivalent to
uninstalling from the MATLAB Add-On Manager.

Disabling an add-on removes the add-on from the MATLAB path.

The following graphic shows the mpsTestData add-on in the MATLAB Add-On Manager.

Manage Access to Applications Deployed on Server
If a client program that you write using MATLAB Client for MATLAB Production Server wants to
execute applications deployed to a server that has application access control enabled, the client must
send a bearer token in server requests. The bearer token identifies the client. To specify a bearer
token, select the server from the Servers and Add-Ons section, then click Config in the Servers
section. For more information on how to specify bearer tokens, see “Application Access Control” on
page 9-14.

For information about specifying a bearer token from the MATLAB command prompt, see
prodserver.addon.accessTokenPolicy.

See Also
prodserver.addon.Explorer | prodserver.addon.accessTokenPolicy |
prodserver.addon.availableAddOns | prodserver.addon.install |
prodserver.addon.isInstalled | prodserver.addon.uninstall

More About
• “Execute Deployed MATLAB Functions” on page 9-5

 Manage Add-Ons

9-23

• “Execute Deployed Functions Using HTTPS” on page 9-17
• “Application Access Control” on page 9-14

9 MATLAB Client

9-24

Deploy Add-Ons
MATLAB deployment tools such as MATLAB Compiler and MATLAB Compiler SDK package MATLAB
functions for deployment to environments external to the MATLAB desktop. These deployment tools
can also package the proxy functions that MATLAB Production Server add-ons install to create
deployable software components that require both the external environment and an active MATLAB
Production Server instance.

For example, consider a deployable archive fractal.ctf that contains a MATLAB function
mandelbrot hosted on a MATLAB Production Server instance.

You can install the fractal add-on on a client machine from the fractal archive using MATLAB
Client for MATLAB Production Server. Installing the fractal add-on installs the proxy mandelbrot
function on your machine. Then, you can write a client program in MATLAB that uses the proxy
mandelbrot function.

You can also package the proxy mandelbrot function into a shared library, for example,
fractal.dll, using MATLAB Compiler SDK. Then, you can write a C++ client program that uses
fractal.dll.

The following diagram shows the MATLAB client (in blue) and the C++ client (in green) calling the
same proxy mandlebrot function to communicate with the mandelbrot function deployed to a
MATLAB Production Server instance.

The following examples show how to package installed proxy functions into a standalone executable,
a shared library, and a deployable archive. The examples use files in the support_package_root
\toolbox\mps\matlabclient\demo folder on your system. The demo folder contains the following
folders:

• fractal — Contains mandelbrot and snowflake MATLAB functions. The mandelbrot function
generates a Mandelbrot set and the snowflake function generates the outline of a Koch
snowflake. You package these MATLAB functions into a MATLAB Production Server deployable
archive.

 Deploy Add-Ons

9-25

• mandelflake — Contains the mandelflake MATLAB function that displays the Mandelbrot set
and the Koch snowflake. You package the mandelflake function into a standalone executable.

• fractalViewer — Contains the twoFractals MATLAB function that displays the Mandelbrot
set and the Koch snowflake based on input arguments that you specify. You package the
twoFractals function into a shared library and a deployable archive.

Prerequisites
The examples require that you have the fractal MATLAB Production Server add-on available in
your MATLAB session. The examples package the proxy functions from the fractal add-on into a
standalone executable, a shared library, and a deployable archive. To make the fractal add-on
available in MATLAB:

1 Package the mandelbrot and snowflake MATLAB functions from the \demo\fractal\ folder
into a deployable archive called fractal using the Production Server Compiler app. You must
include a MATLAB function signature file when you create the archive. For more information
about packaging archives, see “Package Deployable Archives with Production Server Compiler
App” on page 2-5.

2 Deploy the fractal archive to a MATLAB Production Server instance. For more information
about deploying the archive, see “Share Deployable Archive”.

Confirm with the server administrator that the discovery service is enabled on the server. For
more information, see “Discovery Service”.

3 Install the fractal add-on in your MATLAB desktop. For more information about installing add-
ons, see prodserver.addon.install. For a detailed example about installing MATLAB
Production Server add-ons, see “Execute Deployed MATLAB Functions” on page 9-5.

You can verify that the fracatl add-on is available in your MATLAB session by running
prodserver.addon.availableAddOns. To test your installation of the fractal add-on, you can
run the example MATLAB function mandelflake that is in \demo\mandelflake at the MATLAB
command prompt.

The standalone executable and shared library require MATLAB Runtime. Install MATLAB Runtime on
your machine if you have not already done so. For more information, see MATLAB Runtime.

Create Standalone Executables That Use Add-Ons
This example shows how to package a proxy function that a MATLAB Production Server add-on
installs, into a standalone executable to invoke a MATLAB function hosted on a MATLAB Production
Server instance. This example requires MATLAB Compiler. You can run standalone executables on
computers that do not have MATLAB installed.

1 For this example, copy the contents of the support_package_root\toolbox\mps
\matlabclient\demo\mandelflake folder to a separate writeable location on your system,
for example, to a folder called mandelflake.

2 Navigate to the writeable mandelflake folder from the MATLAB command prompt. The
mandelflake folder contains a MATLAB function called mandelflake. Use the mcc command
to create a standalone executable called mandelflake from the mandelflake MATLAB
function.

>> cd mandelflake
>> mcc -m mandelflake

9 MATLAB Client

9-26

https://www.mathworks.com/products/compiler/matlab-runtime.html

This command produces an executable file mandelflake.exe on a Windows system.

On Linux and Mac OS, it produces an executable called mandelflake.
3 Run the executable at the system command prompt to display the Mandelbrot set and Koch

snowflake.

C:\mandelflake> mandelflake

Two windows appear, one containing the Mandelbrot set and one displaying the Koch snowflake.

Create Shared Libraries or Software Components That Use Add-Ons
This example shows how to package a proxy function that a MATLAB Production Server add-on
installs, into a shared library, then use the shared library in a C++ client to invoke a MATLAB
function hosted on a MATLAB Production Server instance. This example requires MATLAB Compiler
SDK and a supported C++ compiler. For a list of supported C++ compilers, see Supported and
Compatible Compilers. MATLAB Compiler SDK creates software components, such as shared
libraries, from MATLAB functions.

1 For this example, copy the contents of the support_package_root\toolbox\mps
\matlabclient\demo\fractalViewer folder to a separate writeable location on your system,
for example, to a folder called fractalViewer. The fractalViewer folder contains the
following:

• A MATLAB function twoFractals that displays images of the Mandelbrot set and the Koch
snowflake based on the input arguments to the function

• A C++ application fractalViewer that invokes the twoFractals function with the
required input arguments

2 Navigate to the writeable fractalViewer folder from the MATLAB command prompt. Use the
mcc command to create a shared library called twoFractals.lib from the twoFractals.m
MATLAB function.

>> cd fractalViewer
>> mcc -W cpplib:twoFractals twoFractals.m

3 The twoFractals shared library requires a client to utilize its public interface. Use the mbuild
function to compile and link the fractalViewer C++ application against the twoFractals
shared library. The fractalViewer C++ application invokes the twoFractals function with
the appropriate inputs.

>> mbuild fractalViewer.cpp twoFractals.lib

This command produces an executable file fractalViewer.exe and a shared library
twoFractals.dll on a Windows system.

On Linux, it produces an executable twoFractals.so and a shared library fractalViewer. On
Mac OS, it produces an executable twoFractals.dylib and a shared library fractalViewer.

4 Run the fractalViewer executable at the system command prompt to display the Mandelbrot
set and Koch snowflake.

C:\fractalViewer> fractalViewer

Two windows appear, one containing the Mandelbrot set and one displaying the Koch snowflake.

 Deploy Add-Ons

9-27

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Create Deployable Archives That Use Add-Ons
This example shows how to package a proxy function that is in one MATLAB Production Server add-
on into a MATLAB Production Server archive, from which you can install a second MATLAB
Production Server add-on. In this case, the proxy functions of the second add-on call the proxy
functions of the first add-on, which in turn call the actual functions (functions hosted on the first
MATLAB Production Server instance) of the first add-on. With this feature, you can chain together
multiple MATLAB Production Server archives. However, longer chains require more network
resources and run more slowly. Application access control is not supported for deployed archives that
contain the add-on proxy functions.

This example requires MATLAB Compiler SDK.

1 For this example, copy the contents of the support_package_root\toolbox\mps
\matlabclient\demo\fractalViewer folder to a separate writeable location on your system,
for example, to a folder called fractalViewer. The fractalViewer folder contains a MATLAB
function twoFractals that displays images of the Mandelbrot set and the Koch snowflake.

2 Create a MATLAB function signature file twoFractalsFunctionSignatures.json in the
writeable fractalViewer folder. You require a MATLAB function signature file when you create
a deployable archive of the twoFractals function. For more information, see “MATLAB
Function Signatures in JSON”. A sample MATLAB function signature file follows.

twoFractalsFunctionSignatures.json

// Function Signatures
// To optionally specify argument types and/or sizes, search for "type"
// and insert the appropriate specifiers inside the brackets. For example:
//
// "type": ["double", "size=1,1"]
//
// To modify function or parameter help text, search for "purpose" and edit
// the values.
//
// JSON-formatted text below this line.
{
 "_schemaVersion": "1.1.0",
 "twoFractals": {
 "inputs": [
 {
 "name": "maxIterations",
 "type": [],
 "purpose": ""
 },
 {
 "name": "width",
 "type": [],
 "purpose": ""
 },
 {
 "name": "complexity",
 "type": [],
 "purpose": ""
 }
],
 "outputs": [],
 "purpose": " TWOFRACTALS Display Mandelbrot set and Koch snowflake.\n"

9 MATLAB Client

9-28

 }
}

3 Navigate to the writeable fractalViewer folder from the MATLAB command prompt. Use the
mcc command to create a deployable archive twoFractal.ctf from the twoFractals.m
MATLAB function.

>> cd fractalViewer
>> mcc('-W','CTF:twoFractals,DISCOVERY:twoFractalsFunctionSignatures.json','-U','twoFractals.m')

4 Copy the resulting archive, twoFractals.ctf, to the auto_deploy folder of a MATLAB
Production Server instance.

5 Then, install the twoFractals MATLAB Production Server add-on. For example, if your MATLAB
Production Server instance has the network address localhost:9910, use the following
command:

>> prodserver.addon.install('twoFractals','localhost',9910)
6 Finally, invoke the twoFractals proxy function:

>> twoFractals(300,600,5)

Two windows appear, one containing the Mandelbrot set and one displaying the Koch snowflake.

See Also

More About
• “Execute Deployed MATLAB Functions” on page 9-5
• “Execute Deployed Functions Using HTTPS” on page 9-17
• “Configure Client-Server Communication” on page 9-11

 Deploy Add-Ons

9-29

MATLAB Client Functions

10

prodserver.addon.accessTokenPolicy
Set access token policy for user authorization

Syntax
prodserver.addon.accessTokenPolicy(host,port,token,Name,Value)
prodserver.addon.accessTokenPolicy(host,port,token)

Description
prodserver.addon.accessTokenPolicy(host,port,token,Name,Value) sets the Azure
Active Directory (Azure AD) credentials for user authorization using one or more name-value
arguments and sets a token generation policy to authorize a user that is using MATLAB Production
Server add-ons to communicate with a server running at host:port.

This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.accessTokenPolicy(host,port,token) sets a token generation policy or
sets the value of a bearer token to authorize a user that is using MATLAB Production Server add-ons
to communicate with a server running at host:port.

Examples

Use System-Generated Bearer Token

To use a system-generated bearer token, you must set the Azure AD app registration credentials
using name-value arguments.

First, make sure that access control is enabled on the server. For more information, see “Application
Access Control”.

Make sure that the MATLAB Production Server add-on of the deployed application is installed on the
client machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 9-5.

Set the system to automatically generate the bearer token to use in requests to a server running at
localhost and port 57142, and also specify Azure AD app registration credentials for user
authorization.

prodserver.addon.accessTokenPolicy('localhost',57142,'automatic',...
'ClientID','0d912326-e439-41d0-822c-b15asdf6137c3',...
'ServerID','dwe4581bf-7867-4b90-a05a-16be6a82flkh',...
'IssuerURI','https://login.microsoftonline.com/yourcompany.com')

Typically, you set the Azure AD app registration credentials once per server instance.

10 MATLAB Client Functions

10-2

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

Specify Bearer Token

Specify a bearer token to use when communicating with a server.

First, enable access control on the server. For more information, see “Application Access Control”.

Make sure that the MATLAB Production Server add-on of the deployed application is installed on the
client machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 9-5.

Specify the bearer token 'bearer_token_value' to use in requests to a server running at IP
address 10.2.2.5 and port 57142.

prodserver.addon.accessTokenPolicy('10.2.2.5',57142,'bearer_token_value')

Do Not Generate Token

Specify that no bearer token is required when access control is not enabled on a server.

Make sure that the MATLAB Production Server add-on of the deployed application is installed on the
client machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 9-5.

Set the system to not generate a bearer token to use in requests to a server running at IP address
10.2.2.5 and port 57142.

prodserver.addon.accessTokenPolicy('10.2.2.5',57142,'none')

Input Arguments
host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.
Example: '144.213.5.7'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.
Example: 9920
Data Types: uint8 | uint16

token — Access token policy
'none' (default) | 'automatic' | character vector | string scalar

Access token policy, specified as a character vector or string scalar. Set a token generation policy or
specify a bearer token to authorize a user when communicating with a server. Possible options follow:

 prodserver.addon.accessTokenPolicy

10-3

• 'automatic' — Generate bearer tokens using user credentials of the user logged in to the client
machine. Azure AD app registration credentials must be set to use this policy.

• 'none' — Do not generate an access token. This value is the default.
• Character vector or string scalar — Specify a value to use as the bearer token.

If access control is enabled on the server, you must set the policy to 'automatic' or specify a bearer
token.
Example: 'automatic'
Example: 'none'
Example: 'AAAAAAAAAABBBBAAAAAAAMLheAAAAAAA0%2BuSepl%2BULvsea4JtiGRiSDSJSI
%3DEUifiRmndf5E2XzMDjRfl76ZC9Ub0wnz4XsNiRVBChTYbJcE3F'

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ClientID','d17lk1bf-7977-4c90-a95a-16by7982fbaf', 'ServerID',
'd7pj91bf-7977-4b90-a05a-17vy5s82fbaf','IssuerURI','https://
login.microsoftonline.com/your_organization_tenantID'

ClientID — Application ID of Azure AD client app
character vector | string scalar

Application ID of the client app registered in Azure AD used for user authorization, specified as a
character vector or string scalar.
Example: 'ClientID','d17lk1bf-7977-4c90-a95a-16by7982fbaf'
Data Types: char | string

ServerID — Application ID of the Azure AD server app
character vector | string scalar

Application ID of the server app registered in Azure AD used for user authorization, specified as a
character vector or string scalar.
Example: 'ServerID','d7pj91bf-7977-4b90-a05a-17vy5s82fbaf'
Data Types: char | string

IssuerURI — URI to generate token
character vector | string scalar

URI to generate a bearer token, specified as a character vector or string scalar. For Azure AD, the
IssuerURI is https://login.microsoftonline.com/ followed by the Azure AD tenant ID.
Example: 'IssuerURI','https://login.microsoftonline.com/
your_organization_tenantID'

Data Types: char | string

10 MATLAB Client Functions

10-4

See Also
prodserver.addon.set

Topics
“Application Access Control” on page 9-14
“Execute MATLAB Functions Using HTTPS”

Introduced in R2020b

 prodserver.addon.accessTokenPolicy

10-5

prodserver.addon.availableAddOns
MATLAB Production Server add-ons available on active server instance

Syntax
addons = prodserver.addon.availableAddOns(host,port)

Description
addons = prodserver.addon.availableAddOns(host,port) returns the add-ons available on
an active MATLAB Production Server server instance.

This function requires MATLAB Client for MATLAB Production Server.

Examples

Add-Ons Available on Server

Find the names of add-ons that are available on an active server instance.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 2-2 and “Share
Deployable Archive”.

Start the server instance running at localhost and port 57142.

Find which add-ons are available on the server.

addons = prodserver.addon.availableAddOns('localhost',57142)

addons =

 1×8 table

 Name Release Version Installed Identifier Scheme Host Port
 _____________ _________ _______ _________ ______________________________________ _______ ___________ _____

 "fractal" "R2020b" "1.0.0" true "76643195-2ba3-4574-8fd0-084cc51251aa" "http" "localhost" 57142

The output indicates that the fractal add-on is available and is also installed on the client machine.

Input Arguments
host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which an add-on is installed, specified as a
character vector or string scalar.

10 MATLAB Client Functions

10-6

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

Example: '144.213.5.7'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which an add-on is installed, specified as
a positive scalar.
Example: 9920
Data Types: uint8 | uint16

Output Arguments
addons — List of available MATLAB Production Server add-ons
table

List of available MATLAB Production Server add-ons on a server instance, specified as a table. If
multiple add-ons are available, each add-on is listed in a separate row. Each row has the following
columns:

• Name — Name of the available add-on.
• Release — Version of MATLAB used to create the add-on.
• Version — Author-specified version of the add-on.
• Installed — Boolean indicating whether the add-on is installed on the client machine. If true,

the add-on is installed. If false, the add-on is not installed.
• Identifier — String uniquely identifying the add-on. For more information, see

prodserver.addon.install.
• Host — Host name of the server that makes the add-on available.
• Port — Port number of the server that makes the add-on available.

See Also
prodserver.addon.install | prodserver.addon.installFolder |
prodserver.addon.isInstalled | prodserver.addon.uninstall

Introduced in R2019b

 prodserver.addon.availableAddOns

10-7

prodserver.addon.Explorer
Launch MATLAB Production Server Add-On Explorer app

Syntax
prodserver.addon.Explorer

Description
This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.Explorer opens the MATLAB Production Server Add-On Explorer app.
The MATLAB Production Server Add-On Explorer app lets you add server instances that your
MATLAB session can communicate with, and lets you browse, install, and uninstall MATLAB
Production Server add-ons that communicate with the servers.

Examples

Open MATLAB Production Server Add-On Explorer app

Open the MATLAB Production Server Add-On Explorer app.

prodserver.addon.Explorer

See Also
prodserver.addon.install | prodserver.addon.uninstall

Topics
“Execute Deployed MATLAB Functions” on page 9-5

Introduced in R2019b

10 MATLAB Client Functions

10-8

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

prodserver.addon.get
Get value of MATLAB Production Server add-on property

Syntax
value = prodserver.addon.get(name)
props = prodserver.addon.get

Description
This function requires MATLAB Client for MATLAB Production Server.

value = prodserver.addon.get(name) returns the value of the MATLAB Production Server
add-on property specified by name.

props = prodserver.addon.get returns the values of all MATLAB Production Server add-on
properties.

Examples

Determine if HTTPS is Used for Client-Sever Communication

Get the value of the TransportLayerSecurity property.

tls = prodserver.addon.get('TransportLayerSecurity')

tls =

 logical

 0

The output indicates that the client does not use HTTPS for client-server communication.

Get Values of All Properties

Get values of all MATLAB Production Server add-on properties.

props = prodserver.addon.get

props =

 struct with fields:

 TransportLayerSecurity: 1
 CertificateFile: [1×0 string]

 prodserver.addon.get

10-9

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

The TransportLayerSecurity field in the output indicates that the client uses HTTPS for client-
server communication.

Input Arguments
name — Name of MATLAB Production Server add-on property
character vector | scalar

Name of the MATLAB Production Server add-on property, specified as a character vector or scalar.
You can specify only valid property names. Valid property names are:

• TransportLayerSecurity
• CertificateFile

Example: 'TransportLayerSecurity'
Data Types: char | string

Output Arguments
value — Value of add-on property
character vector | string

Value of the MATLAB Production Server add-on property, returned as a character vector or string.

props — Values of all add-on properties
structure

Values of all MATLAB Production Server add-on properties, returned as a structure. The structure
contains the following fields:

• TransportLayerSecurity — Boolean that indicates whether the client uses HTTPS.
• CertificateFile — Path to the SSL certificate of the server. For more information, see “Save

SSL Certificate of Server” on page 9-17.

See Also
prodserver.addon.set

External Websites
“Execute MATLAB Functions Using HTTPS”

Introduced in R2020a

10 MATLAB Client Functions

10-10

prodserver.addon.install
Install MATLAB Production Server add-on from server

Syntax
prodserver.addon.install(name,host,port)
prodserver.addon.install(name,host,port,'TransportLayerSecurity',tf)
prodserver.addon.install(name,endpoint)
info = prodserver.addon.install(___)

Description
prodserver.addon.install(name,host,port) installs the MATLAB Production Server add-on
name from a MATLAB Production Server instance running at host and port.

This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.install(name,host,port,'TransportLayerSecurity',tf) additionally
lets you specify the URI scheme (HTTP or HTTPS) of the sever.

prodserver.addon.install(name,endpoint) lets you specify the network address for the
active server instance from which you can install add-ons.

info = prodserver.addon.install(___) additionally returns information about the installed
add-on using any of the input arguments in previous syntaxes.

Examples

Install Add-On Using Host Name and Port of Server

Install a MATLAB Production Server add-on using the default http scheme.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 2-2 and “Share
Deployable Archive”.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142.

prodserver.addon.install('fractal','10.2.2.5',57142)

ans =

 1×5 table

 Name Version Enabled Identifier Endpoint
 __________________ _______ _______ ______________________________________ ________________________

 prodserver.addon.install

10-11

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

 "fractal (R2020b)" "1.0.0" true "599ce38c-eea1-4011-85b9-8d301b4d5375" "http://10.2.2.5:57142"

Install Add-On Using Network Address of Server

Install a MATLAB Production Server add-on using the network address of the server.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 2-2 and “Share
Deployable Archive”.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142.

prodserver.addon.install('fractal','http://10.2.2.5:57142')

ans =

 1×5 table

 Name Version Enabled Identifier Endpoint
 __________________ _______ _______ ______________________________________ ________________________

 "fractal (R2020b)" "1.0.0" true "599ce38c-eea1-4011-85b9-8d301b4d5375" "http://10.2.2.5:57142"

Install Add-On Using HTTPS

Use HTTPS for client-server communication when installing an add-on.

First, enable HTTPS on a MATLAB Production Server instance. For more information, see “Enable
HTTPS”.

Host a deployable archive fractal on the server instance. You must include a MATLAB function
signature file when you create the archive. You must enable the discovery service on the server
instance that hosts the archive. For information on how to create and deploy the archive, see “Create
Deployable Archive for MATLAB Production Server” on page 2-2 and “Share Deployable Archive”.

Install the fractal add-on from a server running at https://10.2.2.5:57142.

prodserver.addon.install('fractal','10.2.2.5',57143,'TransportLayerSecurity',true)

ans =

 1×5 table

 Name Version Enabled Identifier Endpoint
 __________________ _______ _______ ______________________________________ ________________________

 "fractal (R2020b)" "1.0.0" true "599ce38c-eea1-4011-85b9-8d301b4d5375" "https://10.2.2.5:57143"

10 MATLAB Client Functions

10-12

Get Add-On Information After Installing Add-On

Install an add-on and obtain information about the installed add-on.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 2-2 and “Share
Deployable Archive”.

Save information to a table info when installing the fractal add-on from a server running at IP
address 10.2.2.5 and port 57142.

info = prodserver.addon.install('fractal','10.2.2.5',57142)

info =

 1×5 table

 Name Version Enabled Identifier Endpoint
 __________________ _______ _______ ______________________________________ ________________________

 "fractal (R2020b)" "1.0.0" true "599ce38c-eea1-4011-85b9-8d301b4d5375" "http://10.2.2.5:57142"

The table info contains information about the installed add-on fractal.

Input Arguments
name — Name of MATLAB Production Server add-on
character vector | string scalar

Name of the MATLAB Production Server add-on to install from a server, specified as a character
vector or string scalar.
Example: 'fractal'
Data Types: char | string

endpoint — Network address of server
character vector | string scalar

Network address of the server hosting a deployable archive from which the add-on is installed,
specified as a character vector or string scalar. The network address has the format scheme://
host_name_of_server:port_number.
Example: 'https://144.213.5.7:9920'
Data Types: char | string

host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.
Example: '144.213.5.7'
Data Types: char | string

 prodserver.addon.install

10-13

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.
Example: 9920
Data Types: uint8 | uint16

tf — Flag to set URI scheme
false (default) | true

Flag that sets the URI scheme that the add-on uses when communicating with a server, specified as a
logical scalar. If you do not set tf or if you set tf to false, the function uses http. If you set tf to
true, the function uses https.
Example: true
Data Types: logical

Output Arguments
info — Information about installed add-on
table

Information about the installed add-on, returned as a table. The table contains the following columns:

• Name — Name of the installed add-on
• Version — Version of the installed add-on
• Enabled — Boolean indicating whether the add-on is available
• Identifier — String uniquely identifying the add-on
• Endpoint — Network address of the server hosting the add-on in the format scheme://

server_host_name:port_number

See Also
prodserver.addon.availableAddOns | prodserver.addon.installFolder |
prodserver.addon.isInstalled | prodserver.addon.uninstall

Topics
“Execute Deployed MATLAB Functions” on page 9-5
“Connect MATLAB Session to MATLAB Production Server” on page 9-2

Introduced in R2019b

10 MATLAB Client Functions

10-14

prodserver.addon.installFolder
Path to installation folder of MATLAB Production Server add-on

Syntax
path = prodserver.addon.installFolder(name,host,port)
path = prodserver.addon.installFolder(name,host,
port,'TransportLayerSecurity',tf)
path = prodserver.addon.installFolder(name,endpoint)

Description
path = prodserver.addon.installFolder(name,host,port) returns the full path to the
folder on a local machine where a MATLAB Production Server add-on is installed. If the add-on is not
present on the local machine, the function returns an empty string. The server does not have to be
active for the function to return the path to the installation folder.

This function requires MATLAB Client for MATLAB Production Server.

path = prodserver.addon.installFolder(name,host,
port,'TransportLayerSecurity',tf) additionally specifies a URI scheme (HTTP or HTTPS)
when specifying the server address.

path = prodserver.addon.installFolder(name,endpoint) specifies a network address
endpoint for the server instance.

Examples

Get Install Location of Add-On

Get the full path to an installed add-on from a server that uses the default HTTP scheme.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142. Get the path
to the fractal add-on.

path = prodserver.addon.installFolder('fractal','10.2.2.5',57142)

path =

 "C:\Users\username\AppData\Roaming\MathWorks\MATLAB Add-Ons\Toolboxes\fractal_ Hosted by MATLAB Production Server"

Get Install Location of Add-On Installed from Server Using HTTPS

Get the full path to an installed add-on from a server that uses the HTTPS scheme.

Install the fractal add-on from a server using HTTPS, and running at IP address 10.2.2.5 and port
57144. Get the path to the fractal add-on.

 prodserver.addon.installFolder

10-15

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

path = prodserver.addon.installFolder('fractal','10.2.2.5',57144,'TransportLayerSecurity',true)

path =

 "C:\Users\username\AppData\Roaming\MathWorks\MATLAB Add-Ons\Toolboxes\fractal_ Hosted by MATLAB Production Server(2)"

Get Install Location of Add-On Using Network Address of Server

Get the full path to an installed add-on by specifying the network address of the server from which it
was installed.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142.

Get the path to the fractal add-on.

path = prodserver.addon.installFolder('fractal','http://10.2.2.5:57142')

path =

 "C:\Users\username\AppData\Roaming\MathWorks\MATLAB Add-Ons\Toolboxes\fractal_ Hosted by MATLAB Production Server"

Input Arguments
name — Name of MATLAB Production Server add-on
character vector | string scalar

Name of the MATLAB Production Server add-on, specified as a character vector or string scalar.
Example: 'fractal'
Data Types: char | string

host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.
Example: '144.213.5.7'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.
Example: 9920
Data Types: uint8 | uint16

endpoint — Network address of server
character vector | string scalar

10 MATLAB Client Functions

10-16

Network address of the server hosting a deployable archive from which the add-on is installed,
specified as a character vector or string scalar. The network address has the format scheme://
host_name_of_server:port_number.
Example: 'https://144.213.5.7:9920'
Data Types: char | string

tf — Flag to set URI scheme
false (default) | true

Flag to set the URI scheme that the add-on uses when communicating with a server, specified as a
logical scalar. If you do not set tf or if you set tf to false, the function uses HTTP. If you set tf to
true, the function uses HTTPS.
Example: true
Data Types: logical

See Also
prodserver.addon.availableAddOns | prodserver.addon.install |
prodserver.addon.isInstalled

Introduced in R2020b

 prodserver.addon.installFolder

10-17

prodserver.addon.isAddOnFcn
Determine if function is installed as part of MATLAB Production Server add-on

Syntax
tf = prodserver.addon.isAddOnFcn(fcn)
[tf,name] = prodserver.addon.isAddOnFcn(fcn)

Description
tf = prodserver.addon.isAddOnFcn(fcn) returns logical 1 (true) if the function fcn is
present on the MATLAB path and originates in a folder that belongs to a MATLAB Production Server
add-on. Otherwise, the function returns logical 0 (false). The function returns false if the add-on
containing fcn is disabled or not installed, because disabling an add-on removes its functions from
the MATLAB path.

This function requires MATLAB Client for MATLAB Production Server.

[tf,name] = prodserver.addon.isAddOnFcn(fcn) additionally returns the name of the add-on
that contains the function fcn. If the add-on containing fcn is disabled or not installed, the function
returns an empty string.

Examples

Find If Function Is Installed on Client Machine

Check if the function mandelbrot is installed on the client machine as part of an add-on.

tf = prodserver.addon.isAddonFcn('mandelbrot')

tf =

 logical

 0

The output indicates that the function mandelbrot is not installed as a part of any add-on on the
client machine.

Find Name of Add-On That Contains Function

Find which add-on contains a particular function.

Consider a deployable archive fractal that you host on the server instance. For more information
on how to create and deploy an archive, see “Create Deployable Archive for MATLAB Production
Server” on page 2-2 and “Share Deployable Archive”.

10 MATLAB Client Functions

10-18

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

After you install the fractal add-on from the server instance, check if the function mandelbrot is
present in the add-on.

[tf,name] = prodserver.addon.isAddonFcn('mandelbrot')

tf =

 logical

 1

name =

 "fractal"

The output indicates that the function mandelbrot is installed on the client machine as part of the
fractal add-on.

Input Arguments
fcn — Name of function
character vector | string scalar

Name of the function, specified as a character vector or string scalar.
Example: 'mandelbrot'
Data Types: char | string

Output Arguments
tf — Value that indicates if function is installed as part of add-on
logical scalar

Value that indicates if the function is installed as part of an add-on, specified as a character vector or
string scalar.

name — Name of add-on that contains function
character vector | string scalar

Name of the add-on that contains the function, specified as a character vector or string scalar. If the
add-on containing the function is disabled or not installed, the function returns an empty string.

See Also
prodserver.addon.availableAddOns | prodserver.addon.install |
prodserver.addon.isInstalled | prodserver.addon.uninstall

Introduced in R2020b

 prodserver.addon.isAddOnFcn

10-19

prodserver.addon.isInstalled
Determine if MATLAB Production Server add-on is installed from server instance

Syntax
tf = prodserver.addon.isInstalled(name,host,port)
tf = prodserver.addon.isInstalled(name,host,port,'TransportLayerSecurity',
setsecurity)
tf = prodserver.addon.isInstalled(name,endpoint)
[tf,tls] = prodserver.addon.isInstalled(___)

Description
tf = prodserver.addon.isInstalled(name,host,port) returns logical 1 (true) if a MATLAB
Production Server add-on name is installed from a server instance whose address is specified by host
and port, and returns logical 0 (false) otherwise.

The server instance does not need to be active when you run this function.

This function requires MATLAB Client for MATLAB Production Server.

tf = prodserver.addon.isInstalled(name,host,port,'TransportLayerSecurity',
setsecurity) additionally specifies a URI scheme (HTTP or HTTPS) for the server address.

tf = prodserver.addon.isInstalled(name,endpoint) specifies a network address for the
server instance.

[tf,tls] = prodserver.addon.isInstalled(___) additionally returns the value of the
TransportLayerSecurity property using any of the input arguments in the previous syntaxes.

Examples

Determine If Add-On Is Installed by Specifying Host and Port of Server

After you install the fractal add-on from a server running at IP address 10.2.2.5 and port 57140,
check if the add-on is installed from the server.

tf = prodserver.addon.isInstalled('fractal','10.2.2.5','57140')

tf =

 logical

 1

The output indicates that the fractal add-on is installed from the server specified by IP address
10.2.2.5 and port number 57140.

10 MATLAB Client Functions

10-20

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

Determine If Add-On Is Installed From Server Using HTTPS

After you install the fractal add-on from a server using HTTPS and running at IP address 10.2.2.5
and port 57140, check if the add-on is installed from the server.

tf = prodserver.addon.isInstalled('fractal','10.2.2.5','57142','TransportLayerSecurity',true)

tf =

 logical

 1

The output indicates that the fractal add-on is installed from the server specified by IP address
10.2.2.5 and port number 57142.

Determine If Add-On Is Installed and if Server Uses HTTPS

After you install the fractal add-on from a server running at IP address 10.2.2.5 and port 57140,
check if the add-on is installed from the server. Additionally, check if the server uses HTTPS.

[tf,tls] = prodserver.addon.isInstalled('fractal','http://10.2.2.5:57140')

tf =

 logical

 1

tls =

 logical

 0

The output indicates that the fractal add-on is installed from the specified server and the scheme is
HTTP.

Input Arguments
name — Name of MATLAB Production Server add-on
character vector | string scalar

Name of the MATLAB Production Server add-on, specified as a character vector or string scalar.
Example: 'fractal'
Data Types: char | string

host — Host name of server
character vector | string scalar

 prodserver.addon.isInstalled

10-21

Host name of the server hosting a deployable archive from which you can install add-ons, specified as
a character vector or string scalar.
Example: '144.213.5.7'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which you can install add-ons, specified
as a positive scalar.
Example: 9920
Data Types: uint8 | unint16

endpoint — Network address of server
character vector | string scalar

Network address of the server hosting a deployable archive from which you can install add-ons,
specified as a character vector or string scalar. The network address has the format scheme://
host_name_of_server:port_number.
Example: 'https://144.213.5.7:9920'
Data Types: char | string

setsecurity — Flag that sets URI scheme
false (default) | true

Flag that sets the URI scheme that the add-on uses when communicating with a server, specified as a
logical scalar. If you do not set setsecurity or if you set setsecurity to false, the scheme is
HTTP. If you set setsecurity to true, the scheme is HTTPS.
Example: 'TransportLayerSecurity',true
Data Types: logical

Output Arguments
tf — Value that indicates whether function is installed
logical scalar

Value that indicates whether the function is installed, returned as a logical scalar.

tls — Value of TransportLayerSecurity property
logical scalar

Value of the TransportLayerSecurity property, returned as a logical scalar. If the value of
TransportLayerSecurity is logical 1 (true), the client-server communication uses HTTPS;
otherwise, it uses HTTP.

See Also
prodserver.addon.availableAddOns | prodserver.addon.install |
prodserver.addon.installFolder | prodserver.addon.isAddOnFcn |
prodserver.addon.set

10 MATLAB Client Functions

10-22

Introduced in R2019b

 prodserver.addon.isInstalled

10-23

prodserver.addon.set
Set value of MATLAB Production Server add-on property

Syntax
prodserver.addon.set('TransportLayersecurity',tf)
prodserver.addon.set('CertificateFile',path)
prodserver.addon.set('TransportLayersecurity',tf,'CertificateFile',path)

Description
prodserver.addon.set('TransportLayersecurity',tf) sets the client-server communication
to use HTTPS or HTTP by setting the value of the TransportLayerSecurity property. If the value
of tf is true, the client-server communication uses HTTPS; otherwise, it uses HTTP.

This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.set('CertificateFile',path) sets the path to the SSL certificate of the
server that is saved on the client machine by setting the CertificateFile property. You might need
to set the path if you save the self-signed SSL certificate of the server locally or for other testing
purposes.

prodserver.addon.set('TransportLayersecurity',tf,'CertificateFile',path) lets
you set the TransportLayersecurity and CertificateFile properties at the same time.

Examples

Use HTTPS for Client-Server Communication

Use HTTPS when communicating with server instances by setting the TransportLayerSecurity
property to true.

prodserver.addon.set('TransportLayerSecurity',true)

This setting persists across MATLAB sessions.

Set Path to Self-Signed Server Certificate

Before your client can communicate with a server that uses a self-signed SSL certificate, you must
save the server certificate locally. For more information, see “Save SSL Certificate of Server” on page
9-17.

Then, set the path to the server certificate that you saved.

prodserver.addon.set('CertificateFile','C:\server_cert.pem')

10 MATLAB Client Functions

10-24

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

This setting persists across MATLAB sessions.

See Also
prodserver.addon.get

Topics
“Execute MATLAB Functions Using HTTPS”

Introduced in R2020a

 prodserver.addon.set

10-25

prodserver.addon.uninstall
Uninstall MATLAB Production Server add-on

Syntax
prodserver.addon.uninstall(name,host,port)
prodserver.addon.uninstall(name,host,port,'TransportLayerSecurity',tf)
prodserver.addon.uninstall(name,endpoint)
prodserver.addon.uninstall(identifier)

Description
prodserver.addon.uninstall(name,host,port) uninstalls a MATLAB Production Server add-
on that is installed from a server whose address is specified by host and port.

Uninstalling a MATLAB Production Server add-on removes the add-on, including all functions,
examples, and documentation available in the add-on. Uninstalling a MATLAB Production Server add-
on does not modify or remove any code that calls the functions available in the add-on. The server
instance is not required to be running for the add-on to be uninstalled.

This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.uninstall(name,host,port,'TransportLayerSecurity',tf)
additionally allows you to specify the URI scheme (HTTP or HTTPS) that the server uses.

prodserver.addon.uninstall(name,endpoint) lets you specify a network address to identify
the server.

prodserver.addon.uninstall(identifier) uninstalls the add-on specified by identifier.

Examples

Uninstall Add-On Using Add-On Name, and Server Host Name and Port

Uninstall a MATLAB Production Server add-on using the add-on name, and the host name and port
number of the server from which the add-on was installed.

First, install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142. For
more information, see prodserver.addon.install.

Use the name of the add-on, and the IP address and port number of the server from which it was
installed to uninstall the add-on.

prodserver.addon.uninstall('fractal','10.2.2.5',57142)

10 MATLAB Client Functions

10-26

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

Specify HTTPS Scheme When Uninstalling Add-On

Uninstall a MATLAB Production Server add-on that uses HTTPS to communicate with a server by
using the host name and port number of the server from which it was installed.

First, install the fractal add-on from a server running at IP address 10.2.2.5 and port 57144, and
using the default HTTP scheme. For more information, see prodserver.addon.install.

To uninstall the add-on, specify the name of the add-on, and the host name and port number of the
server from which the add-on was installed. Also, specify the HTTPS scheme by setting the
TransportLayerSecurity property to true.

prodserver.addon.uninstall('fractal','10.2.2.5',57144,'TransportLayerSecurity',true)

Uninstall Add-On Using Add-On Name and Network Address of Server

Uninstall a MATLAB Production Server add-on using the add-on name and network address of the
server from which it was installed.

First, install the fractal add-on from a server running at http://10.2.2.5:57142. For more
information, see prodserver.addon.install.

Use the name of the add-on and the network address of the server from which it was installed to
uninstall the add-on.

prodserver.addon.uninstall('fractal','http://10.2.2.5:57142')

Uninstall Add-On Using Unique Identifier

Uninstall a MATLAB Production Server add-on using its unique identifier.

First, install a MATLAB Production Server add-on fractal using prodserver.addon.install.

prodserver.addon.install returns an identifier that uniquely identifies the add-on.

Use the unique identifier to uninstall the add-on.

prodserver.addon.uninstall('3c192cbd-95dc-4263-a722-6d594b9ae12c')

Input Arguments
identifier — String uniquely identifying the add-on
character vector | string scalar

String uniquely identifying the add-on, specified as a character vector or string scalar.
Example: '3c192cbd-95dc-4263-a722-6d594b9ae12c'
Data Types: char | string

name — Name of MATLAB Production Server add-on
character vector | string scalar

 prodserver.addon.uninstall

10-27

Name of the MATLAB Production Server add-on to uninstall, specified as a character vector or string
scalar.
Example: 'fractal'
Data Types: char | string

endpoint — Network address of server
character vector | string scalar

Network address of the server hosting a deployable archive from which the add-on is installed,
specified as a character vector or string scalar. The network address has the format scheme://
host_name_of_server:port_number.
Example: 'https://localhost:9910'
Data Types: char | string

host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.
Example: '144.213.5.7'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.
Example: 9920
Data Types: uint8 | uint16

tf — Flag to determine URI scheme
false (default) | true

Flag that determines the URI scheme that the server uses, specified as a logical scalar.

• true — The add-on uses HTTPS.
• false — The add-on uses HTTP.

Example: 'TransportLayerSecurity',true
Data Types: logical

See Also
prodserver.addon.install

Introduced in R2019b

10 MATLAB Client Functions

10-28

MATLAB Client Apps

11

	Write Deployable MATLAB Code
	MATLAB Coding Guidelines
	State-Dependent Functions
	Does My MATLAB Function Carry State?
	Defensive Coding Practices
	Techniques for Preserving State

	Deploying MATLAB Functions Containing MEX Files
	Supported MATLAB Data Types for Client and Server Marshaling
	Supported Data Types
	Partially Supported Data Types
	Unsupported Data Types

	Create a Deployable Archive from MATLAB Production Server Code
	Create Deployable Archive for MATLAB Production Server
	Create MATLAB Function
	Create Deployable Archive with Production Server Compiler App
	Customize Application and Its Appearance
	Package Application

	Package Deployable Archives with Production Server Compiler App
	Create Function In MATLAB
	Create Deployable Archive with Production Server Compiler App
	Customize the Application and Its Appearance
	Package the Application

	Package Deployable Archives from Command Line
	Execute Compiler Projects with deploytool
	Package a Deployable Archive with mcc
	Differences Between Compiler Apps and Command Line

	Modifying Deployed Functions

	Customizing a Compiler Project
	Customize an Application
	Customize the Installer
	Manage Required Files in Compiler Project
	Sample Driver File Creation
	Specify Files to Install with Application
	Additional Runtime Settings

	Manage Support Packages
	Using a Compiler App
	Using the Command Line

	Advanced Uses of the Command Line Compiler
	Simplify Compilation Using Macros
	Macros
	Working With Macros

	Invoke MATLAB Build Options
	Specify Full Path Names to Build MATLAB Code
	Using Bundles to Build MATLAB Code

	MATLAB Runtime Component Cache and Deployable Archive Embedding
	Overriding Default Behavior
	For More Information

	Functions
	compiler.build.productionServerArchive
	compiler.build.ProductionServerArchiveOptions
	compiler.build.Results
	productionServerCompiler
	deploytool
	mcc

	Apps
	Production Server Compiler

	Persistence
	Use a Data Cache to Persist Data
	Example: Increment a Counter Using a Data Cache

	Example: Calculate the Shortest Route Between Cities Using Persistence
	Step 1: Write MATLAB Code that uses Persistence Functions
	Step 2: Run Example in Testing Workflow
	Step 3: Run Example in Deployment Workflow

	Persistence Functions
	mps.cache.DataCache
	mps.cache.Controller
	mps.cache.connect
	mps.cache.control
	attach
	detach
	start
	stop
	restart
	ping
	version
	bytes
	clear
	flush
	get
	getp
	isKey
	keys
	length
	countRemoteKeys
	purge
	put
	remove
	retain
	mps.sync.mutex
	mps.sync.TimedRedisMutex
	mps.sync.TimedMATFileMutex
	acquire
	own
	release

	MATLAB Client
	Connect MATLAB Session to MATLAB Production Server
	When to Use MATLAB Client for MATLAB Production Server
	Install MATLAB Client for MATLAB Production Server
	Connect MATLAB Session to MATLAB Production Server
	System Requirements
	Synchronous Function Execution
	Supported Data Types

	Execute Deployed MATLAB Functions
	Install MATLAB Client for MATLAB Production Server
	Deploy MATLAB Function on Server
	Install MATLAB Production Server Add-On for the Deployable Archive
	Manage Installed Add-On
	Invoke Deployed MATLAB Function

	Configure Client-Server Communication
	Configure Timeouts and Retries
	Update Server Configuration

	Application Access Control
	Prerequisites
	Configure Access Control

	Execute Deployed Functions Using HTTPS
	Save SSL Certificate of Server
	Install Add-On Using HTTPS
	Manage Default Protocol for Client-Server Communication

	Manage Add-Ons
	Install Add-Ons
	Remove Add-Ons
	Get Information about Add-Ons
	Manage Add-Ons
	Manage Access to Applications Deployed on Server

	Deploy Add-Ons
	Prerequisites
	Create Standalone Executables That Use Add-Ons
	Create Shared Libraries or Software Components That Use Add-Ons
	Create Deployable Archives That Use Add-Ons

	MATLAB Client Functions
	prodserver.addon.accessTokenPolicy
	prodserver.addon.availableAddOns
	prodserver.addon.Explorer
	prodserver.addon.get
	prodserver.addon.install
	prodserver.addon.installFolder
	prodserver.addon.isAddOnFcn
	prodserver.addon.isInstalled
	prodserver.addon.set
	prodserver.addon.uninstall

	MATLAB Client Apps

